IKFoM (Iterated Kalman Filters on Manifolds) is a computationally efficient and convenient toolkit for deploying iterated Kalman filters on various robotic systems, especially systems operating on high-dimension manifold. It implements a manifold-embedding Kalman filter which separates the manifold structures from system descriptions and is able to be used by only defining the system in a canonical form and calling the respective steps accordingly. The current implementation supports the full iterated Kalman filtering for systems on manifold and any of its sub-manifolds, and it is extendable to other types of manifold when necessary.
Developers
Our related video: https://youtu.be/sz_ZlDkl6fA
Eigen >= 3.3.4, Follow Eigen Installation.
Boost >= 1.65.
Clone the repository:
git clone https://github.com/hku-mars/IKFoM.git
- include the necessary head file:
#include<esekfom/esekfom.hpp>
- Select and instantiate the primitive manifolds:
typedef MTK::SO3<double> SO3; // scalar type of variable: double
typedef MTK::vect<3, double> vect3; // dimension of the defined Euclidean variable: 3
typedef MTK::S2<double, 98, 10, 1> S2; // length of the S2 variable: 98/10; choose e1 as the original point of rotation: 1
- Build system state, input and measurement as compound manifolds which are composed of the primitive manifolds:
MTK_BUILD_MANIFOLD(state, // name of compound manifold: state
((vect3, pos)) // ((primitive manifold type, name of variable))
((vect3, vel))
((SO3, rot))
((vect3, bg))
((vect3, ba))
((S2, grav))
((SO3, offset_R_L_I))
((vect3, offset_T_L_I))
);
Eigen::Matrix<double, state_length, 1> f(state &s, const input &i) {}
Eigen::Matrix<double, state_length, state_dof> df_dx(state &s, const input &i) {} //notice S2 has length of 3 and dimension of 2
Eigen::Matrix<double, state_length, process_noise_dof> df_dw(state &s, const input &i) {}
measurement h(state &s, bool &valid) {} //the iteration stops before convergence when valid is false
Eigen::Matrix<double, measurement_dof, state_dof> dh_dx(state &s, bool &valid) {}
Eigen::Matrix<double, measurement_dof, measurement_noise_dof> dh_dv(state &s, bool &valid) {}
- Instantiate an esekf object kf and initialize it with initial or default state and covariance. (1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof>::cov init_P;
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof> kf(init_state,init_P);
(2) default state and covariance:
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init(f, df_dx, df_dw, h, dh_dx, dh_dv, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, an iterated update is executed:
kf.update_iterated(z, R); // measurement noise covariance: R
Remarks(1):
- We also combine the output equation and its differentiation into an union function, whose usage is the same as the above steps 1-4, and steps 5-9 are shown as follows.
measurement h_share(state &s, esekfom::share_datastruct<state, measurement, measurement_noise_dof> &share_data)
{
if(share_data.converge) {} // this value is true means iteration is converged
share_data.valid = false; // the iteration stops before convergence when this value is false
share_data.h_x = H_x; // H_x is the result matrix of the first differentiation
share_data.h_v = H_v; // H_v is the result matrix of the second differentiation
share_data.R = R; // R is the measurement noise covariance
share_data.z = z; // z is the obtained measurement
}
- Instantiate an esekf object kf and initialize it with initial or default state and covariance. (1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof>::cov init_P;
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof> kf(init_state,init_P);
(2) default state and covariance:
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init_share(f, df_dx, df_dw, h_share, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, an iterated update is executed:
kf.update_iterated_share();
Remarks(2):
- The value of the state x and the covariance P are able to be changed by functions change_x() and change_P():
state set_x;
kf.change_x(set_x);
esekfom::esekf<state, process_noise_dof, input, measurement, measurement_noise_dof>::cov set_P;
kf.change_P(set_P);
Clone the repository:
git clone https://github.com/hku-mars/IKFoM.git
- include the necessary head file:
#include<esekfom/esekfom.hpp>
- Select and instantiate the primitive manifolds:
typedef MTK::SO3<double> SO3; // scalar type of variable: double
typedef MTK::vect<3, double> vect3; // dimension of the defined Euclidean variable: 3
typedef MTK::S2<double, 98, 10, 1> S2; // length of the S2 variable: 98/10; choose e1 as the original point of rotation: 1
- Build system state and input as compound manifolds which are composed of the primitive manifolds:
MTK_BUILD_MANIFOLD(state, // name of compound manifold: state
((vect3, pos)) // ((primitive manifold type, name of variable))
((vect3, vel))
((SO3, rot))
((vect3, bg))
((vect3, ba))
((S2, grav))
((SO3, offset_R_L_I))
((vect3, offset_T_L_I))
);
Eigen::Matrix<double, state_length, 1> f(state &s, const input &i) {}
Eigen::Matrix<double, state_length, state_dof> df_dx(state &s, const input &i) {} //notice S2 has length of 3 and dimension of 2
Eigen::Matrix<double, state_length, process_noise_dof> df_dw(state &s, const input &i) {}
Eigen::Matrix<double, Eigen::Dynamic, 1> h(state &s, bool &valid) {} //the iteration stops before convergence when valid is false
Eigen::Matrix<double, Eigen::Dynamic, state_dof> dh_dx(state &s, bool &valid) {}
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> dh_dv(state &s, bool &valid) {}
- Instantiate an esekf object kf and initialize it with initial or default state and covariance. (1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input>::cov init_P;
esekfom::esekf<state, process_noise_dof, input> kf(init_state,init_P);
(2) default state and covariance:
esekfom::esekf<state, process_noise_dof, input> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init_dyn(f, df_dx, df_dw, h, dh_dx, dh_dv, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, an iterated update is executed:
kf.update_iterated_dyn(z, R); // measurement noise covariance: R
Remarks(1):
- We also combine the output equation and its differentiation into an union function, whose usage is the same as the above steps 1-4, and steps 5-9 are shown as follows.
Eigen::Matrix<double, Eigen::Dynamic, 1> h_dyn_share(state &s, esekfom::dyn_share_datastruct<double> &dyn_share_data)
{
if(dyn_share_data.converge) {} // this value is true means iteration is converged
dyn_share_data.valid = false; // the iteration stops before convergence when this value is false
dyn_share_data.h_x = H_x; // H_x is the result matrix of the first differentiation
dyn_share_data.h_v = H_v; // H_v is the result matrix of the second differentiation
dyn_share_data.R = R; // R is the measurement noise covariance
dyn_share_data.z = z; // z is the obtained measurement
}
- Instantiate an esekf object kf and initialize it with initial or default state and covariance. (1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input>::cov init_P;
esekfom::esekf<state, process_noise_dof, input> kf(init_state,init_P);
(2) default state and covariance:
esekfom::esekf<state, process_noise_dof, input> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init_dyn_share(f, df_dx, df_dw, h_dyn_share, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, an iterated update is executed:
kf.update_iterated_dyn_share();
Remarks(2):
- The value of the state x and the covariance P are able to be changed by functions change_x() and change_P():
state set_x;
kf.change_x(set_x);
esekfom::esekf<state, process_noise_dof, input>::cov set_P;
kf.change_P(set_P);
Clone the repository:
git clone https://github.com/hku-mars/IKFoM.git
- include the necessary head file:
#include<esekfom/esekfom.hpp>
- Select and instantiate the primitive manifolds:
typedef MTK::SO3<double> SO3; // scalar type of variable: double
typedef MTK::vect<3, double> vect3; // dimension of the defined Euclidean variable: 3
typedef MTK::S2<double, 98, 10, 1> S2; // length of the S2 variable: 98/10; choose e1 as the original point of rotation: 1
- Build system state and input as compound manifolds which are composed of the primitive manifolds:
MTK_BUILD_MANIFOLD(state, // name of compound manifold: state
((vect3, pos)) // ((primitive manifold type, name of variable))
((vect3, vel))
((SO3, rot))
((vect3, bg))
((vect3, ba))
((S2, grav))
((SO3, offset_R_L_I))
((vect3, offset_T_L_I))
);
Eigen::Matrix<double, state_length, 1> f(state &s, const input &i) {}
Eigen::Matrix<double, state_length, state_dof> df_dx(state &s, const input &i) {} //notice S2 has length of 3 and dimension of 2
Eigen::Matrix<double, state_length, process_noise_dof> df_dw(state &s, const input &i) {}
Eigen::Matrix<double, Eigen::Dynamic, state_dof> dh_dx(state &s, bool &valid) {} //the iteration stops before convergence when valid is false
Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic> dh_dv(state &s, bool &valid) {}
- Instantiate an esekf object kf and initialize it with initial or default state and covariance. (1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input>::cov init_P;
esekfom::esekf<state, process_noise_dof, input> kf(init_state,init_P);
(2)
esekfom::esekf<state, process_noise_dof, input> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init_dyn_runtime(f, df_dx, df_dw, dh_dx, dh_dv, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, build system measurement as compound manifolds following step 3 and implement the output equation :
measurement h(state &s, bool &valid) {} //the iteration stops before convergence when valid is false
then an iterated update is executed:
kf.update_iterated_dyn_runtime(z, R, h); // measurement noise covariance: R
Remarks(1):
- We also combine the output equation and its differentiation into an union function, whose usage is the same as the above steps 1-4, and steps 5-9 are shown as follows.
- Instantiate an esekf object kf and initialize it with initial or default state and covariance.
(1) initial state and covariance:
state init_state;
esekfom::esekf<state, process_noise_dof, input>::cov init_P;
esekfom::esekf<state, process_noise_dof, input> kf(init_state,init_P);
(2) default state and covariance:
esekfom::esekf<state, process_noise_dof, input> kf;
- Deliver the defined models, maximum iteration numbers Maximum_iter, and the std array for testing convergence limit into the esekf object:
kf.init_dyn_runtime_share(f, df_dx, df_dw, Maximum_iter, limit);
- In the running time, once an input in is received with time interval dt, a propagation is executed:
kf.predict(dt, Q, in); // process noise covariance: Q
- Once a measurement z is received, build system measurement as compound manifolds following step 3 and implement the output equation and its differentiation , :
measurement h_dyn_runtime_share(state &s, esekfom::dyn_runtime_share_datastruct<double> &dyn_runtime_share_data)
{
if(dyn_runtime_share_data.converge) {} // this value is true means iteration is converged
dyn_runtime_share_data.valid = false; // the iteration stops before convergence when this value is false
dyn_runtime_share_data.h_x = H_x; // H_x is the result matrix of the first differentiation
dyn_runtime_share_data.h_v = H_v; // H_v is the result matrix of the second differentiation
dyn_runtime_share_data.R = R; // R is the measurement noise covariance
}
then an iterated update is executed:
kf.update_iterated_dyn_runtime_share(z, h_dyn_runtime_share);
Remarks(2):
- The value of the state x and the covariance P are able to be changed by functions change_x() and change_P():
state set_x;
kf.change_x(set_x);
esekfom::esekf<state, process_noise_dof, input>::cov set_P;
kf.change_P(set_P);
Clone the repository:
git clone https://github.com/hku-mars/IKFoM.git
In the Samples file folder, there is the scource code that applys the IKFoM on the original source code from FAST LIO. Please follow the README.md shown in that repository excepting the step 2. Build, which is modified as:
cd ~/catkin_ws/src
cp -r ~/IKFoM/Samples/FAST_LIO-stable FAST_LIO-stable
cd ..
catkin_make
source devel/setup.bash
Thanks for C. Hertzberg, R. Wagner, U. Frese, and L. Schroder. Integratinggeneric sensor fusion algorithms with sound state representationsthrough encapsulation of manifolds.