Introduction to Computational Thinking and Data Science
This repo contains the code for MIT OCW 6.0002.
Lecture |
Topics |
Lecture 1 |
Knapsack Problem, Greedy Algorithms |
Lecture 2 |
Search Trees, Dynamic Programming |
Lecture 3 |
Graphs, DFS, BFS, Shortest Path |
Lecture 4 |
Stochastic Thinking |
Lecture 5 |
Random Walks |
Lecture 6 |
Monte Carlo Methods |
Lecture 7 |
Confidence Intervals, Central Limit Theorem |
Lecture 8 |
TODO |
Lecture 9 |
TODO |
Lecture 10 |
TODO |
Lecture 11 |
TODO |
Lecture 12 |
TODO |
Lecture 13 |
TODO |
Lecture 14 |
TODO |
Lecture 15 |
TODO |
Problem Set |
Topics |
Problem Set 1 |
Knapsack, Greedy, Dynamic Programming |
Problem Set 2 |
DFS, Shortest Path in a Weighted Graph |
Problem Set 3 |
TODO |
Problem Set 4 |
TODO |
Problem Set 5 |
TODO |