/m2vcl

Export regression models to Varnish Configuration Language

Primary LanguageVCLMIT LicenseMIT

m2vcl

CI Tests status badge

Experimental extension of m2cgen to export statistical models to Varnish Configuration Language, for use in the Varnish cache. Right now only Fastly-flavored VCL is the only target supported, though this could theoretically partially target core Varnish in the future.

Examples

For code examples and their generated VCL outputs, see the example_outputs directory.

Usage

Use export_to_fastly_vcl to export to Fastly-flavored VCL. The export_to_fasty_vcl function takes arguemnts indent (defaults to 4, indent size in the generated VCL) and sub_name (defaults to score, the prefix for the generated subroutine and input/output header names). Inputs for the subroutine can be set on the headers req.http.<prefix>_input_<index> and outputs will be set on the header req.http.<prefix>_output_<index>.

A working demo is available in this Fastly fiddle, with the source provided below:

Generating Python code

from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier

import m2vcl

iris = load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, random_state=0)

clf = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)
clf.fit(X_train, y_train)
print(m2vcl.export_to_vcl(clf))

Output VCL

sub score {
    declare local var.input_3 FLOAT;
    set var.input_3 = std.atof(req.http.score_input_3);

    declare local var.input_2 FLOAT;
    set var.input_2 = std.atof(req.http.score_input_2);

    declare local var.var0_0 FLOAT;
    declare local var.var0_1 FLOAT;
    declare local var.var0_2 FLOAT;
    if (var.input_3 <= 0.800000011920929) {
        set var.var0_0 = 1.0;
        set var.var0_1 = 0.0;
        set var.var0_2 = 0.0;
    } else {
        if (var.input_2 <= 4.950000047683716) {
            set var.var0_0 = 0.0;
            set var.var0_1 = 0.9166666666666666;
            set var.var0_2 = 0.08333333333333333;
        } else {
            set var.var0_0 = 0.0;
            set var.var0_1 = 0.02564102564102564;
            set var.var0_2 = 0.9743589743589743;
        }
    }
    set req.http.score_output_0 = var.var0_0;
    set req.http.score_output_1 = var.var0_1;
    set req.http.score_output_2 = var.var0_2;
    return;
}

VCL Usage

# VCL_DELIVER
set req.http.score_input_2 = "1.23456789";
set req.http.score_input_3 = "9.87654321";
call score;
set resp.http.Score-Result-0 = req.http.score_output_0;
set resp.http.Score-Result-1 = req.http.score_output_1;
set resp.http.Score-Result-2 = req.http.score_output_2;

Known limitations

  • Precision is limited due to limitations of Fastly, and will be lost for each subroutine the AST is broken down into due to the required float -> string -> float conversion.
  • Only tested with a small subset of models i.e. highly experimental - make sure to sanity check outputs

Todo

  • Improve test coverage by performing end to end testing on Fastly
  • Create tests for more models
  • Support core Varnish (may require a VMOD to provide equivalent functionality of Fastly's math trig)