Michael B. Sohn 7/05/2021
The cmmb function estimates direct and indirect effects of treatment on binary outcomes mediated through a compositional mediator that consists of multiple components. For detailed information about the arguments, please see the documentation for cmmb().
Note: the number of components can be high-dimensional. However, it will be computationally intensive to run it with high-dimensional components as it tests the indirect effect using debiased bootstrap estimates based on 2,000 (in default) random samplings.
install.packages(“devtools”)
devtools::install_github(“mbsohn/cmmb”)
### load functions used in data generation and performance comparison
library(cmmb)
source("comparators.R")
### Generate a simulated dataset of 50 samples and 5 taxa
set.seed(2021)
### The gen.cmm.sim.data function simulates data based on the logistic normal distribution.
### The first argument takes the number of samples and the second takes the number of components
### (taxa). By default, both direct and indirect effects are significantly different from zero.
sim.dat <- gen.cmm.sim.data(50, 5)
### Run CMM for binary outcomes
rslt <- cmmb(Y=sim.dat$Y, M=sim.dat$M, tr=sim.dat$tr, X=sim.dat$X)
rslt
## $total
## Estimate Lower Limit Upper Limit
## DE 0.1831665 0.1206513 0.2885970
## TIDE 0.2585639 0.1525723 0.3321615
##
## $cwprod
## Estimate Lower Limit Upper Limit
## taxon1 0.45250088 0.0643407 0.7435297
## taxon2 0.00179244 -0.2030688 0.1593904
## taxon3 -0.20841877 -0.5068055 0.1638699
## taxon4 0.61865737 -0.1058526 1.1229078
## taxon5 0.51405582 -0.4161137 1.1703481
##
## attr(,"class")
## [1] "cmmb"
### Plot products of component-wise path coefficients
plot_cw_ide(rslt)
rslt.sa <- cmmb(Y=sim.dat$Y, M=sim.dat$M, tr=sim.dat$tr, X=sim.dat$X, ForSA=TRUE)
### Plot sensitivity of the estimated total indirect effect
plot_cmmb_sa(rslt.sa)
Note: By default, the gen.cmm.sim.data function simulates data such that both direct and indirect effects are significantly different from zero.
sim.dat <- gen.cmm.sim.data(50, 5)
PCS(Y=sim.dat$Y, M=sim.dat$M, tr=sim.dat$tr, X=sim.dat$X)
## Estimate Lower Limit Upper Limit
## DE 0.8585578 -1.011952 1.807630
## TIDE 0.5737664 -2.550865 2.263679
PCP(Y=sim.dat$Y, M=sim.dat$M, tr=sim.dat$tr, X=sim.dat$X)
## Estimate Lower Limit Upper Limit
## DE 0.16603048 0.09844733 0.34177689
## TIDE 0.01797279 -0.15262002 0.07936442
cmmb(Y=sim.dat$Y, M=sim.dat$M, tr=sim.dat$tr, X=sim.dat$X)$total
## Estimate Lower Limit Upper Limit
## DE 0.1615200 0.11897322 0.2372022
## TIDE 0.1003837 0.02902102 0.1425433