/yolov5

YOLOv5 in PyTorch > ONNX > CoreML > TFLite

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

 

This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. All code and models are under active development, and are subject to modification or deletion without notice. Use at your own risk.

** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 8, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.

  • June 22, 2020: PANet updates: increased layers, reduced parameters, faster inference and improved mAP 364fcfd.
  • June 19, 2020: FP16 as new default for smaller checkpoints and faster inference d4c6674.
  • June 9, 2020: CSP updates: improved speed, size, and accuracy. Credit to @WongKinYiu for excellent CSP work.
  • May 27, 2020: Public release of repo. YOLOv5 models are SOTA among all known YOLO implementations, YOLOv5 family will be undergoing architecture research and development over Q2/Q3 2020 to increase performance. Updates may include CSP bottlenecks, YOLOv4 features, as well as PANet or BiFPN heads.
  • April 1, 2020: Begin development of a 100% PyTorch, scaleable YOLOv3/4-based group of future models, in a range of compound-scaled sizes. Models will be defined by new user-friendly *.yaml files. New training methods will be simpler to start, faster to finish, and more robust to training a wider variety of custom dataset.

Pretrained Checkpoints

Model APval APtest AP50 SpeedGPU FPSGPU params FLOPS
YOLOv5s 36.6 36.6 55.8 2.1ms 476 7.5M 13.2B
YOLOv5m 43.4 43.4 62.4 3.0ms 333 21.8M 39.4B
YOLOv5l 46.6 46.7 65.4 3.9ms 256 47.8M 88.1B
YOLOv5x 48.4 48.4 66.9 6.1ms 164 89.0M 166.4B
YOLOv3-SPP 45.6 45.5 65.2 4.5ms 222 63.0M 118.0B

** APtest denotes COCO test-dev2017 server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by python test.py --img 736 --conf 0.001
** SpeedGPU measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP n1-standard-16 instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by python test.py --img 640 --conf 0.1
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).

Requirements

Python 3.7 or later with all requirements.txt dependencies installed, including torch >= 1.5. To install run:

$ pip install -U -r requirements.txt

Tutorials

Inference

Inference can be run on most common media formats. Model checkpoints are downloaded automatically if available. Results are saved to ./inference/output.

$ python detect.py --source file.jpg  # image 
                            file.mp4  # video
                            ./dir  # directory
                            0  # webcam
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on examples in the ./inference/images folder:

$ python detect.py --source ./inference/images/ --weights yolov5s.pt --conf 0.4

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.4, device='', fourcc='mp4v', half=False, img_size=640, iou_thres=0.5, output='inference/output', save_txt=False, source='./inference/images/', view_img=False, weights='yolov5s.pt')
Using CUDA device0 _CudaDeviceProperties(name='Tesla P100-PCIE-16GB', total_memory=16280MB)

Downloading https://drive.google.com/uc?export=download&id=1R5T6rIyy3lLwgFXNms8whc-387H0tMQO as yolov5s.pt... Done (2.6s)

image 1/2 inference/images/bus.jpg: 640x512 3 persons, 1 buss, Done. (0.009s)
image 2/2 inference/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.009s)
Results saved to /content/yolov5/inference/output

Reproduce Our Training

Download COCO, install Apex and run command below. Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                48
                                         yolov5l                                32
                                         yolov5x                                16

Reproduce Our Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

Citation

DOI

About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

  • Cloud-based AI surveillance systems operating on hundreds of HD video streams in realtime.
  • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
  • Custom data training, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

Contact

Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.