/CoCoAST

Primary LanguagePython

CoCoAST: A Novel Neural Code Representation with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees

Environment

Create an environment and activate it:

conda create -n  CoCoAST python=3.6 ipykernel -y
conda activate CoCoAST
conda install pydot -y
conda install pyzmq -y
pip install git+https://github.com/casics/spiral.git
pip install pandas==1.0.5 gensim==3.5.0 scikit-learn==0.19.1 pycparser==2.18 javalang==0.11.0 tqdm networkx==2.3 nltk==3.6 psutil gin-config prettytable
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
pip install tqdm prettytable  transformers==4.12.5 gdown more-itertools tensorboardX  sklearn
pip install tree_sitter seaborn==0.11.2 fast-histogram

Install Java 1.8

Install pytorch according to your environment, see https://pytorch.org/ you can use nvcc --version to check the cuda version.

Model

CoCoAST(A Novel Neural Code Representation with Hierarchical Splitting and Reconstruction of Abstract Syntax Trees)hierarchically splits a large AST into a set of subtrees and learns the representation of the complete AST by aggregating its subtrees' representation learned using tree-based neural models. The overall framework includes three major components: an AST encoder, a code token encoder,and a multi-modality fusion module. Given an input method, the AST encoder captures the semantic and structural information of its AST. The code token encoder encodes the lexical information of the method. The fusion module merges the information from two modalities (AST and code) to obtain the final neural code representation.

1

Code Search

Data Preparation

Downloading and preprocessing codesearchnet java dataset

cd code_search/dataset
wget https://s3.amazonaws.com/code-search-net/CodeSearchNet/v2/java.zip
unzip java.zip
rm *.zip
python preprocess.py

it will generate train.jsonl,valid.jsonl,test.jsonl and codebase.jsonl

The statistic of dataset

Train Valid Test Codebase
164,923 5,183 10,955 40,347

Obtaining split asts

cd code_search/dataset
bash get_split_ast.sh 
% getting ast vocab
python get_flatten_ast_and_ast_vocab.py

Train and Evaluation

cd code_search/
bash run.sh

Result

The results are saved in here

Model MRR R@1 R@5 R@10
NBow 0.170 0.123 0.258 0.334
CNN 0.287 0.201 0.377 0.454
BiRNN 0.305 0.21 0.392 0.471
SelfAtt 0.403 0.305 0.511 0.591
Transformer 0.420 0.324 0.532 0.610
codeastnn 0.438 0.336 0.554 0.633
CoCoAST 0.461 0.360 0.580 0.657

Code Summarization

Data Preparation

Download Processed the dataset by:

cd .code_summarization/Data/
bash get_data.sh
cd ../

or run python pipeline.sh to generate preprocessed small data from scratch.

Dataset train valid test
TL-CodeSum 66,935 8,359 8,367
Funcom 1,904,093 103,650 103,487

More details about AST splitting implementation can refer to Splitting

Training

You can download the trained model by:

bash get_trained_model.sh

The model is saved in ./code_summarization/output/DATASET_NAME/model.pth. DATASET_NAME is TL_CodeSum or Funcom.

You can also train it from scratch. batch size should be configured based on the GPU memory size by setting -bs xx

Train in Single GPU

cd code_summarization/source_code/
python casts.py  -cf_file "DATASET_NAME.json"  -ddp False

for example

python casts.py  -cf_file "TL_CodeSum.json"  -ddp False

Train in Multi-GPU

Take 4-GPUs for example:

cd code_summarization/source_code/
python -m torch.distributed.launch --nproc_per_node=4  --master_addr='localhost' --master_port=23456 casts.py  -cf_file "DATASET_NAME.json" 

note: you can find the output in code_summarization/output/DATASET_NAME.

Testing

Set -only_test is True for testing. The model is load from code_summarization/output/tl_codesum/model.pth and the log file and predict result are saved in code_summarization/output/tl_codesum/predict.json

cd code_summarization/source_code/
python casts.py  -cf_file "DATASET_NAME.json"  -ddp False -only_test True

for example

python casts.py  -cf_file "TL_CodeSum.json"  -ddp False  -only_test True

Evaluation

cd code_summarization/source_code/
python evaluation.py -dataset DATASET_NAME

for example

cd code_summarization/source_code/
python evaluation.py -dataset TL_CodeSum

Human evaluation

Click here to see the result of human evaluation