/keraTorch

Primary LanguageJupyter NotebookApache License 2.0Apache-2.0

KeraTorch

Implementing Keras clone with pytorch backend.

Install

pip install keratorch

How to use

from keraTorch.model import Sequential
from keraTorch.layers import *
from keraTorch.losses import *

The data:

x_train.shape, y_train.shape, x_valid.shape, y_valid.shape
((50000, 784), (50000,), (10000, 784), (10000,))

Model definition:

model = Sequential()
model.add(Dense(100, x_train.shape[1], activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(10))
model.add(Activation('softmax'))

Doesn't actually compile anything but to look like keras we specify the loss as below. ce4softmax means crossentropy for softmax loss.

model.compile(ce4softmax)

Burrow for Fastai's learning rate finder to find best learning rate:

bs = 256
model.lr_find(x_train, y_train, bs=bs)
Min numerical gradient: 9.12E-03
Min loss divided by 10: 1.45E-02

png

We have the same .fit and .predict functions:

model.fit(x_train, y_train, bs, epochs=10, lr=1e-2)
epoch train_loss valid_loss time
0 2.298158 2.270433 00:01
1 2.249195 2.054905 00:01
2 2.082948 1.474771 00:01
3 1.806854 0.904923 00:01
4 1.526004 0.737786 00:01
5 1.293055 0.705958 00:01
6 1.105806 0.666755 00:01
7 0.958004 0.687373 00:01
8 0.838495 0.696255 00:01
9 0.741785 0.697341 00:01
preds = model.predict(x_valid)
accuracy = (preds.argmax(axis=-1) == y_valid).mean()
print(f'Predicted accuracy is {accuracy:.2f}')
Predicted accuracy is 0.81