saeed349/Advances-in-Financial-Machine-Learning
Using Dask, a Python framework, I handle 900 million rows of S&P E-mini futures trade tick data directly on a local machine. Through exploratory data analysis, continuous series creation, and bar sampling, inspired by Marcos Lopez de Prado's work, I demonstrate efficient alternatives to costly data processing methods.
Jupyter Notebook
Stargazers
- 9812334
- adriantorriehttp://ascension.ai
- afedyanin
- ASHEESHPATEL1996
- avinash-mishraRakuten Inc.
- choguiMIT
- ChoiInYeolKyungHee University
- clyde-strydom
- drbothenAll Your Base Are Belong To Us!
- Engineer-BobetSingapore
- FinancialDietsIndependent Research
- florahaberkornWashington, DC
- gastyrRio de Janeiro, Brazil
- HitanshuReddy
- igorrivinTemple University
- JBprogaman
- johnnyb1509
- jyjoo94
- lcrmorin
- lmassaron@google Developers Expert
- martindesagredoPalma de Mallorca
- MihailATLondon, UK
- ortolanrjCloud
- OskarBienkoRespect Energy
- Peng-Liu
- PierreNowi
- pradeeproy303
- r2stanton
- rajeevmps
- raulcarlomagnoMoon
- roigecodeChainlink
- ScientiaCapitalScientia Capital
- sfuller14Northwestern University
- sharavsambuuMurun, Khuvsgul, Mongolia
- SlyderekKakao Corp