/vegetableDetection

Android app for veg detection

Primary LanguageJava

Vegetable Detection

Group Members

Name Roll
Sagar Dash 241174
Md. Atiqur Rahman 241172
Jannatul Ferdous 241160

Introduction

This project is a part of the course "Deep Learning" at Jahangirnagar University. The goal of this project is to detect vegetables in images. The dataset consists of 10 different classes of vegetables. The dataset is split into a training and a test set. The training set contains 10,000 images and the test set contains 2,3115 images.

Vegetable Detection Dataset.

Python notebook code

The dataset contains 36 classes of vegetables. The classes are:

"apple",
"banana",
"beetroot",
"bell pepper",
"cabbage",
"capsicum",
"carrot",
"cauliflower",
"chilli pepper",
"corn",
"cucumber",
"eggplant",
"garlic",
"ginger",
"grapes",
"jalepeno",
"kiwi",
"lemon",
"lettuce",
"mango",
"onion",
"orange",
"paprika",
"pear",
"peas",
"pineapple",
"pomegranate",
"potato",
"raddish",
"soy beans",
"spinach",
"sweetcorn",
"sweetpotato",
"tomato",
"turnip",
"watermelon"

Screenshot of the app:

ss1.jpeg ss2.jpeg ss3.jpeg ss4.jpeg