/multiscale

An agent based, multiscale model of viral infection dynamics

Primary LanguageJupyter Notebook

A multiscale model of viral infection

Usage

Tweak parameters in parameters.h.

make
./gendata       # Generate random data (environments, contacts)
./model         # Run model, save data
./plot.p        # Visualize

Model outputs are present in the output folder as .dat files, in csv format.

Note: Plotting currently requires gnuplot.

Run ./model -h for help on more options.

Visualize the degree distribution of the generated network using ./degree_distribution.R, and see figures/degree_distribution.pdf.

Multiple runs

Execute ./multirun.sh 1 200 to recreate model outputs expected by the scripts multirun.R and peaks.R which generate figures.

The command ./multirun.sh START END will run the model multiple times for different values for P_INFECT, and produce output files indexed by integers from START to END. For example, ./multirun.sh 1 10 will produce files countdata_01.dat to countdata_10.dat in the output/p2 to output/p8 folders.

Here, we have adjusted the parameter P_INFECT (probability of infection on contact) as $X \times 10^{-3}$ for $X \in \{2, 3, 4, 5, 6, 8\}$.

Change the statement P_INFECT=(2 3 4 5 6 8) in multirun.sh to use other values for $X$; the corresponding output files will be placed in the output/pX folder.

Tweak the variables trials and trial_p in multirun.R and peaks.R to reflect the number of trials and the values of $X$.

One agent

Tweak parameters in oneagent.c, then make and run ./oneagent.c > output/oneagent.dat. Visualize using oneagent.p, or oneagent.R which produces figures/oneagent.pdf.

Description

The model specification can be found in report/model.pdf.

TODO

  • Implement status ($S, I, R$) and shedding dynamics based on actual viral load curves
  • Implement immune response
  • Implement mortality
  • Create variation among agents, environments
  • Better contact networks

References

  1. Wang X, Wang S, Wang J, Rong L. A Multiscale Model of COVID-19 Dynamics. Bull Math Biol. 2022 Aug 9;84(9):99. doi: 10.1007/s11538-022-01058-8.

  2. Ciupe SM, Heffernan JM. In-host modeling. Infect Dis Model. 2017 Apr 29;2(2):188-202. doi: 10.1016/j.idm.2017.04.002.