Tweak parameters in parameters.h
.
make
./gendata # Generate random data (environments, contacts)
./model # Run model, save data
./plot.p # Visualize
Model outputs are present in the output
folder as .dat
files, in csv
format.
Note: Plotting currently requires gnuplot
.
Run ./model -h
for help on more options.
Visualize the degree distribution of the generated network using
./degree_distribution.R
, and see figures/degree_distribution.pdf
.
Execute ./multirun.sh 1 200
to recreate model outputs expected by the
scripts multirun.R
and peaks.R
which generate figures.
The command ./multirun.sh START END
will run the model multiple times for
different values for P_INFECT
, and produce output files indexed by integers
from START
to END
. For example, ./multirun.sh 1 10
will produce files
countdata_01.dat
to countdata_10.dat
in the output/p2
to output/p8
folders.
Here, we have adjusted the parameter P_INFECT
(probability of infection on
contact) as
Change the statement P_INFECT=(2 3 4 5 6 8)
in multirun.sh
to use other
values for output/pX
folder.
Tweak the variables trials
and trial_p
in multirun.R
and peaks.R
to
reflect the number of trials and the values of
Tweak parameters in oneagent.c
, then make
and run
./oneagent.c > output/oneagent.dat
. Visualize using oneagent.p
,
or oneagent.R
which produces figures/oneagent.pdf
.
The model specification can be found in report/model.pdf
.
- Implement status (
$S, I, R$ ) and shedding dynamics based on actual viral load curves - Implement immune response
- Implement mortality
- Create variation among agents, environments
- Better contact networks
-
Wang X, Wang S, Wang J, Rong L. A Multiscale Model of COVID-19 Dynamics. Bull Math Biol. 2022 Aug 9;84(9):99. doi: 10.1007/s11538-022-01058-8.
-
Ciupe SM, Heffernan JM. In-host modeling. Infect Dis Model. 2017 Apr 29;2(2):188-202. doi: 10.1016/j.idm.2017.04.002.