/matmul.c

Fast, Multi-threaded Matrix Multiplication in C

Primary LanguageCMIT LicenseMIT

High-Performance Matrix Multiplication on CPU

Important! If you compile the code with GCC, use the implementation from matmul_gcc.c. If CLANG - it's easier to use more compact implementation from matmul.c. Please don’t expect peak performance without fine-tuning the hyperparameters, such as the number of threads, kernel and block sizes, unless you run it on a Ryzen 7700(X). More on this in the tutorial.

In the current implementation, only 1 out of 5 loops is parallelized (the 2nd loop around the micro-kernel). For manycore processors (more than 16 cores), consider utilizing nested parallelism and parallelizing 2-3 loops to increase performance (e.g., the 5th, 3rd, and 2nd loops around the micro-kernel).

Key Features

  • Step by step tutorial
  • Simple and scalable C code (<150 LOC)
  • Supports arbitrary matrix sizes
  • Faster than NumPy with OpenBLAS and MKL backends on Ryzen 7700
  • Efficiently parallelized with just 3 lines of OpenMP directives
  • Targets x86 processors with AVX2 and FMA3 instructions (=all modern Intel Core and AMD Ryzen CPUs)
  • Follows the BLIS design
  • Intuitive API void matmul(float* A, float* B, float* C, const int M, const int N, const int K)

Installation

Install the following packages via apt if you are using a Debian-based Linux distribution

sudo apt-get install clang cmake build-essential python3-dev python3-pip libomp-dev

Create the virtual environment using pip or conda e.g.

python3 -m venv .venv
source .venv/bin/activate

and install the Python dependencies

python -m pip install -r requirements.txt

Usage

For quick testing, fine-tuning, and prototyping, use the standalone file matmul.c in the main folder:

clang -O2 -mno-avx512f -fopenmp -march=native matmul.c -o matmul.out && ./matmul.out

or matmul_gcc.c for GCC compiler:

gcc -O2 -mno-avx512f -fopenmp -march=native matmul_gcc.c -o matmul.out && ./matmul.out

To verify the numerial accuracy, add -DTEST:

clang -O2 -mno-avx512f -fopenmp -march=native -DTEST matmul.c -o matmul.out && ./matmul.out

Performance

Tested on:

  • CPU: Ryzen 7 7700 8 Cores, 16 Threads
  • RAM: 32GB DDR5 6000 MHz CL36
  • Numpy 1.26.4
  • Compiler: clang-17
  • Compiler flags: -O2 -mno-avx512f -march=native
  • OS: Ubuntu 22.04.4 LTS

openblas

mkl

To benchmark the code, compile benchmark.c using clang. Parameters NTHREADS, MR, NR , MC, NC, KC can be defined in CMakeLists.txt or via command line as shown below:

export CC=/usr/bin/clang
cmake -B build -S . -DMR=16 -DNR=6 -DNTHREADS=16
cmake --build build

To reproduce the results, run:

python benchmark_numpy.py

./build/benchmark MINSIZE MAXSIZE NPTS WARMUP

python plot_benchmark.py

If not manually specified, default values are MINSIZE=200, MAXSIZE=5000, NPTS=50, WARMUP=15.