/csv-editor

Primary LanguagePythonMIT LicenseMIT

CSV Editor - AI-Powered CSV Processing via MCP

Python MCP License FastMCP Pandas smithery badge

Transform how AI assistants work with CSV data. CSV Editor is a high-performance MCP server that gives Claude, ChatGPT, and other AI assistants powerful data manipulation capabilities through simple commands.

CSV Editor MCP server

๐ŸŽฏ Why CSV Editor?

The Problem

AI assistants struggle with complex data operations - they can read files but lack tools for filtering, transforming, analyzing, and validating CSV data efficiently.

The Solution

CSV Editor bridges this gap by providing AI assistants with 40+ specialized tools for CSV operations, turning them into powerful data analysts that can:

  • Clean messy datasets in seconds
  • Perform complex statistical analysis
  • Validate data quality automatically
  • Transform data with natural language commands
  • Track all changes with undo/redo capabilities

Key Differentiators

Feature CSV Editor Traditional Tools
AI Integration Native MCP protocol Manual operations
Auto-Save Automatic with strategies Manual save required
History Tracking Full undo/redo with snapshots Limited or none
Session Management Multi-user isolated sessions Single user
Data Validation Built-in quality scoring Separate tools needed
Performance Handles GB+ files with chunking Memory limitations

โšก Quick Demo

# Your AI assistant can now do this:
"Load the sales data and remove duplicates"
"Filter for Q4 2024 transactions over $10,000"  
"Calculate correlation between price and quantity"
"Fill missing values with the median"
"Export as Excel with the analysis"

# All with automatic history tracking and undo capability!

๐Ÿš€ Quick Start (2 minutes)

Installing via Smithery

To install csv-editor for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @santoshray02/csv-editor --client claude

Fastest Installation (Recommended)

# Install uv if needed (one-time setup)
curl -LsSf https://astral.sh/uv/install.sh | sh

# Clone and run
git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
uv sync
uv run csv-editor

Configure Your AI Assistant

Claude Desktop (Click to expand)

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS):

{
  "mcpServers": {
    "csv-editor": {
      "command": "uv",
      "args": ["tool", "run", "csv-editor"],
      "env": {
        "CSV_MAX_FILE_SIZE": "1073741824"
      }
    }
  }
}
Other Clients (Continue, Cline, Windsurf, Zed)

See MCP_CONFIG.md for detailed configuration.

๐Ÿ’ก Real-World Use Cases

๐Ÿ“Š Data Analyst Workflow

# Morning: Load yesterday's data
session = load_csv("daily_sales.csv")

# Clean: Remove duplicates and fix types
remove_duplicates(session_id)
change_column_type("date", "datetime")
fill_missing_values(strategy="median", columns=["revenue"])

# Analyze: Get insights
get_statistics(columns=["revenue", "quantity"])
detect_outliers(method="iqr", threshold=1.5)
get_correlation_matrix(min_correlation=0.5)

# Report: Export cleaned data
export_csv(format="excel", file_path="clean_sales.xlsx")

๐Ÿญ ETL Pipeline

# Extract from multiple sources
load_csv_from_url("https://api.example.com/data.csv")

# Transform with complex operations
filter_rows(conditions=[
    {"column": "status", "operator": "==", "value": "active"},
    {"column": "amount", "operator": ">", "value": 1000}
])
add_column(name="quarter", formula="Q{(month-1)//3 + 1}")
group_by_aggregate(group_by=["quarter"], aggregations={
    "amount": ["sum", "mean"],
    "customer_id": "count"
})

# Load to different formats
export_csv(format="parquet")  # For data warehouse
export_csv(format="json")     # For API

๐Ÿ” Data Quality Assurance

# Validate incoming data
validate_schema(schema={
    "customer_id": {"type": "integer", "required": True},
    "email": {"type": "string", "pattern": r"^[^@]+@[^@]+\.[^@]+$"},
    "age": {"type": "integer", "min": 0, "max": 120}
})

# Quality scoring
quality_report = check_data_quality()
# Returns: overall_score, missing_data%, duplicates, outliers

# Anomaly detection
anomalies = find_anomalies(methods=["statistical", "pattern"])

๐ŸŽจ Core Features

Data Operations

  • Load & Export: CSV, JSON, Excel, Parquet, HTML, Markdown
  • Transform: Filter, sort, group, pivot, join
  • Clean: Remove duplicates, handle missing values, fix types
  • Calculate: Add computed columns, aggregations

Analysis Tools

  • Statistics: Descriptive stats, correlations, distributions
  • Outliers: IQR, Z-score, custom thresholds
  • Profiling: Complete data quality reports
  • Validation: Schema checking, quality scoring

Productivity Features

  • Auto-Save: Never lose work with configurable strategies
  • History: Full undo/redo with operation tracking
  • Sessions: Multi-user support with isolation
  • Performance: Stream processing for large files

๐Ÿ“š Available Tools

Complete Tool List (40+ tools)

I/O Operations

  • load_csv - Load from file
  • load_csv_from_url - Load from URL
  • load_csv_from_content - Load from string
  • export_csv - Export to various formats
  • get_session_info - Session details
  • list_sessions - Active sessions
  • close_session - Cleanup

Data Manipulation

  • filter_rows - Complex filtering
  • sort_data - Multi-column sort
  • select_columns - Column selection
  • rename_columns - Rename columns
  • add_column - Add computed columns
  • remove_columns - Remove columns
  • update_column - Update values
  • change_column_type - Type conversion
  • fill_missing_values - Handle nulls
  • remove_duplicates - Deduplicate

Analysis

  • get_statistics - Statistical summary
  • get_column_statistics - Column stats
  • get_correlation_matrix - Correlations
  • group_by_aggregate - Group operations
  • get_value_counts - Frequency counts
  • detect_outliers - Find outliers
  • profile_data - Data profiling

Validation

  • validate_schema - Schema validation
  • check_data_quality - Quality metrics
  • find_anomalies - Anomaly detection

Auto-Save & History

  • configure_auto_save - Setup auto-save
  • get_auto_save_status - Check status
  • undo / redo - Navigate history
  • get_history - View operations
  • restore_to_operation - Time travel

โš™๏ธ Configuration

Environment Variables

Variable Default Description
CSV_MAX_FILE_SIZE 1GB Maximum file size
CSV_SESSION_TIMEOUT 3600s Session timeout
CSV_CHUNK_SIZE 10000 Processing chunk size
CSV_AUTO_SAVE true Enable auto-save

Auto-Save Strategies

CSV Editor automatically saves your work with configurable strategies:

  • Overwrite (default) - Update original file
  • Backup - Create timestamped backups
  • Versioned - Maintain version history
  • Custom - Save to specified location
# Configure auto-save
configure_auto_save(
    strategy="backup",
    backup_dir="/backups",
    max_backups=10
)

๐Ÿ› ๏ธ Advanced Installation Options

Alternative Installation Methods

Using pip

git clone https://github.com/santoshray02/csv-editor.git
cd csv-editor
pip install -e .

Using pipx (Global)

pipx install git+https://github.com/santoshray02/csv-editor.git

From GitHub (Recommended)

# Install latest version
pip install git+https://github.com/santoshray02/csv-editor.git

# Or using uv
uv pip install git+https://github.com/santoshray02/csv-editor.git

# Install specific version
pip install git+https://github.com/santoshray02/csv-editor.git@v1.0.1

๐Ÿงช Development

Running Tests

uv run test           # Run tests
uv run test-cov       # With coverage
uv run all-checks     # Format, lint, type-check, test

Project Structure

csv-editor/
โ”œโ”€โ”€ src/csv_editor/   # Core implementation
โ”‚   โ”œโ”€โ”€ tools/        # MCP tool implementations
โ”‚   โ”œโ”€โ”€ models/       # Data models
โ”‚   โ””โ”€โ”€ server.py     # MCP server
โ”œโ”€โ”€ tests/            # Test suite
โ”œโ”€โ”€ examples/         # Usage examples
โ””โ”€โ”€ docs/            # Documentation

๐Ÿค Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Quick Contribution Guide

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes with tests
  4. Run uv run all-checks
  5. Submit a pull request

๐Ÿ“ˆ Roadmap

  • SQL query interface
  • Real-time collaboration
  • Advanced visualizations
  • Machine learning integrations
  • Cloud storage support
  • Performance optimizations for 10GB+ files

๐Ÿ’ฌ Support

๐Ÿ“„ License

MIT License - see LICENSE file

๐Ÿ™ Acknowledgments

Built with:

  • FastMCP - Fast Model Context Protocol
  • Pandas - Data manipulation
  • NumPy - Numerical computing

Ready to supercharge your AI's data capabilities? Get started in 2 minutes โ†’