Object detection using deep learning with Yolo, OpenCV and Python via Real Time Streaming Protocol (RTSP
)
Recognized objects are stored in date seperated in folders per class for further training or face recognition.
OpenCV dnn
module supports running inference on pre-trained deep learning models from popular frameworks like Caffe, Torch and TensorFlow.
When it comes to object detection, popular detection frameworks are
- YOLO
- SSD
- Faster R-CNN
Support for running YOLO/DarkNet has been added to OpenCV dnn module recently.
- opencv
- numpy
- imageio-ffmpeg
pip install numpy opencv-python imageio-ffmpeg
Note: Python 2.x is not supported
Download the pre-trained YOLO v3 weights file from this link or for tiny weights for slower machines link and place it in the current directory or you can directly download to the current directory in terminal using
$ wget https://pjreddie.com/media/files/yolov3.weights
$ wget https://pjreddie.com/media/files/yolov3-tiny.weights
Provided all the files are in the current directory, below command will apply object detection on the input video commuters.mp4
.
$ python yolo_opencv.py --input sampledata/commuters.mp4 --config cfg/yolov3-tiny.cfg --weights yolov3-tiny.weights --classes cfg/yolov3.txt
For RTSP simply put the RTSP URL as --input
$ python yolo_opencv.py --input rtsp://xxxxx:1935/live/sys.stream --framestart 100 --framelimit 100 --config cfg/yolov3-tiny.cfg --weights yolov3-tiny.weights --classes cfg/yolov3.txt
Arguments
parameter | type | description |
---|---|---|
input |
String | /path/to/input/stream |
outputfile |
String | /path/to/outputfile |
outputdir |
String | /path/to/outputdir |
framestart |
Int | start detecting at frame x (int) |
framelimit |
Int | stop after x (int) frames and save the video in case of streams. 0 no limit |
config |
String | /path/to/config/file |
weights |
String | /path/to/weights/file |
classes |
String | /path/to/classes/file |
invertcolor |
Boolean | in case of BGR streams |
fpsthrottle |
Int | in case of slower machines to keep up with a stream |
Checkout the object detection implementation available in cvlib which enables detecting common objects in the context through a single function call detect_common_objects()
.
This project is based on Arun Ponnusamy's Object Detection OpenCV
Sample video footage from Videvo - Free Stock Video Footage