RabbitMQ Sharding Plugin

This plugin introduces the concept of sharded queues for RabbitMQ. Sharding is performed by exchanges, that is, messages will be partitioned across "shard" queues by one exchange that we should define as sharded. The machinery used behind the scenes implies defining an exchange that will partition, or shard messages across queues. The partitioning will be done automatically for you, i.e: once you define an exchange as sharded, then the supporting queues will be automatically created on every cluster node and messages will be sharded across them.

Project Maturity

This plugin is reasonably mature and known to have production users.

Overview

The following graphic depicts how the plugin works from the standpoint of a publisher and a consumer:

Sharding Overview

As you can see in the graphic, the producers publishes a series of messages, those messages get partitioned to different queues, and then our consumer get messages from one of those queues. Therefore if you have a partition with 3 queues, then you will need to have at least 3 consumers to get all the messages from those queues.

Auto-scaling

One interesting property of this plugin, is that if you add more nodes to your RabbitMQ cluster, then the plugin will automatically create more shards in the new node. Say you had a shard with 4 queues in node a and node b just joined the cluster. The plugin will automatically create 4 queues in node b and join them to the shard partition. Already delivered messages will not be rebalanced, but newly arriving messages will be partitioned to the new queues.

Partitioning Messages

The exchanges that ship by default with RabbitMQ work in a "all or nothing" fashion, i.e: if a routing key matches a set of queues bound to the exchange, then RabbitMQ will route the message to all the queues in that set. Therefore for this plugin to work, we need to route messages to an exchange that would partition messages, so they are routed to at most one queue.

The plugin provides a new exchange type "x-modulus-hash" that will use the traditional hashing technique applying to partition messages across queues.

The "x-modulus-hash" exchange will hash the routing key used to publish the message and then it will apply a Hash mod N to pick the queue where to route the message, where N is the number of queues bound to the exchange. This exchange will completely ignore the binding key used to bind the queue to the exchange.

You could also use other exchanges that have similar behaviour like the Consistent Hash Exchange or the Random Exchange. The first one has the advantage of shipping directly with RabbitMQ.

If just need message partitioning but not the automatic queue creation provided by this plugin, then you can just use the Consistent Hash Exchange.

Consuming From a Sharded [Pseudo-]Queue

While the plugin creates a bunch of "shard" queues behind the scenes, the idea is that those queues act like a big logical queue where you consume messages from it. Total ordering of messages between shards is not defined.

An example should illustrate this better: let's say you declared the exchange images to be a sharded exchange. Then RabbitMQ creates several "shard" queues behind the scenes:

  • shard: - nodename images 1
  • shard: - nodename images 2
  • shard: - nodename images 3
  • shard: - nodename images 4.

To consume from a sharded queue, register a consumer on the "images" pseudo-queue using the basic.consume method. RabbitMQ will attach the consumer to a shard behind the scenes. Note that consumers must not declare a queue with the same name as the sharded pseudo-queue prior to consuming.

TL;DR: if you have a shard called images, then you can directly consume from a queue called images.

How does it work? The plugin will chose the queue from the shard with the least amount of consumers, provided the queue contents are local to the broker you are connected to.

NOTE: there's a small race condition between RabbitMQ updating the queue's internal stats about consumers and when clients issue basic.consume commands. The problem with this is that if your client issue many basic.consume commands without too much time in between, it might happen that the plugin assigns the consumers to queues in an uneven way.

Installing

RabbitMQ 3.6.0 or later

As of RabbitMQ 3.6.0 this plugin is included into the RabbitMQ distribution.

Enable it with the following command:

rabbitmq-plugins enable rabbitmq_sharding

You'd probably want to also enable the Consistent Hash Exchange plugin, too.

With Earlier Versions

Install the corresponding .ez files from our Community Plugins archive.

Then run the following command:

rabbitmq-plugins enable rabbitmq_sharding

You'd probably want to also enable the Consistent Hash Exchange plugin, too.

Usage

Once the plugin is installed you can define an exchange as sharded by setting up a policy that matches the exchange name. For example if we have the exchange called shard.images, we could define the following policy to shard it:

$CTL set_policy images-shard "^shard.images$" '{"shards-per-node": 2, "routing-key": "1234"}'

This will create 2 sharded queues per node in the cluster, and will bind those queues using the "1234" routing key.

About the routing-key policy definition

In the example above we use the routing key 1234 when defining the policy. This means that the underlying exchanges used for sharding will bind the sharded queues to the exchange using the 1234 routing key specified above. This means that for a direct exchange, _only messages that are published with the routing key 1234 will be routed to the sharded queues. If you decide to use a fanout exchange for sharding, then the 1234 routing key, while used during binding, will be ignored by the exchange. If you use the "x-modulus-hash" exchange, then the routing key will be ignored as well. So depending on the exchange you use, will be the effect the routing-key policy definition has while routing messages.

The routing-key policy definition is optional.

Building from Source

Get the RabbitMQ Public Umbrella ready as explained in the RabbitMQ Plugin Development Guide.

Move to the umbrella folder an then run the following commands, to fetch dependencies:

make up
cd deps/rabbitmq-sharding
make dist

LICENSE

See the LICENSE file.

Extra information

Some information about how the plugin affects message ordering and some other details can be found in the file README.extra.md