/1xN

1xN Block Pattern for Network Sparsity

Primary LanguagePython

1×N Block Pattern for Network Sparsity (paper) .

This is Pytorch re-implementation of "1×N Block Pattern for Network Sparsity". A more formal project will be released as soon as we are given the authority from Alibaba Group.

1) 1×N Block Sparsity

Requirements

  • Python 3.7
  • Pytorch >= 1.0.1
  • CUDA = 10.0.0

Code Running

To reproduce our experiments, please use the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--job_dir ./experiment/ \
--data_path [DATA_PATH] \
--pretrained_model [PRETRAIN_MODEL_PATH] \
--pr_target 0.5 \
--N 4 (or 2, 8, 16, 32) \
--conv_type BlockL1Conv \
--train_batch_size 256 \
--eval_batch_size 256 \
--rearrange \

Accuracy Performance

Table 1: Performance comparison of our 1×N block sparsity against weight pruning and filter pruning (p = 50%).

MobileNet-V1 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 70.764 89.592 Pruned Model
Filter Pruning 65.348 86.264 Pruned Model
1 x 2 Block 70.281 89.370 Pruned Model
1 x 4 Block 70.052 89.056 Pruned Model
1 x 8 Block 69.908 89.027 Pruned Model
1 x 16 Block 69.559 88.933 Pruned Model
1 x 32 Block 69.541 88.801 Pruned Model
MobileNet-V2 Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 71.146 89.872 Pruned Model
Filter Pruning 66.730 87.190 Pruned Model
1 x 2 Block 70.233 89.417 Pruned Model
1 x 4 Block 60.706 89.165 Pruned Model
1 x 8 Block 69.372 88.862 Pruned Model
1 x 16 Block 69.352 88.708 Pruned Model
1 x 32 Block 68.762 88.425 Pruned Model
MobileNet-V3-small Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 66.376 86.868 Pruned Model
Filter Pruning 59.054 81.713 Pruned Model
1 x 2 Block 65.380 86.060 Pruned Model
1 x 4 Block 64.465 85.495 Pruned Model
1 x 8 Block 64.101 85.274 Pruned Model
1 x 16 Block 63.126 84.203 Pruned Model
1 x 32 Block 62.881 83.982 Pruned Model
MobileNet-V3-large Top-1 Acc. Top-5 Acc. Model Link
Weight Pruning 72.897 91.093 Pruned Model
Filter Pruning 69.137 89.097 Pruned Model
1 x 2 Block 72.120 90.677 Pruned Model
1 x 4 Block 71.935 90.458 Pruned Model
1 x 8 Block 71.478 90.163 Pruned Model
1 x 16 Block 71.112 90.129 Pruned Model
1 x 32 Block 70.769 89.696 Pruned Model

More links for pruned models under different pruning rates and their training logs can be found here.

Evaluate our models

To verify the performance of our pruned models, download our pruned models from the links provided above and run the following command:

python imagenet.py \
--gpus 0 \
--arch mobilenet_v1 (or mobilenet_v2 or mobilenet_v3_large or mobilenet_v3_small) \
--data_path [DATA_PATH] \
--conv_type DenseConv \
--evaluate [PRUNED_MODEL_PATH] \
--eval_batch_size 256 \

Arguments

optional arguments:
  -h, --help            show this help message and exit
  --gpus                Select gpu_id to use. default:[0]
  --data_path           The dictionary where the data is stored.
  --job_dir             The directory where the summaries will be stored.
  --resume              Load the model from the specified checkpoint.
  --pretrain_model      Path of the pre-trained model.
  --pruned_model        Path of the pruned model to evaluate.
  --arch                Architecture of model. For ImageNet :mobilenet_v1, mobilenet_v2, mobilenet_v3_small, mobilenet_v3_large
  --num_epochs          The num of epochs to train. default:180
  --train_batch_size    Batch size for training. default:256
  --eval_batch_size     Batch size for validation. default:100
  --momentum            Momentum for Momentum Optimizer. default:0.9
  --lr LR               Learning rate. default:1e-2
  --lr_decay_step       The iterval of learn rate decay for cifar. default:100 150
  --lr_decay_freq       The frequecy of learn rate decay for Imagenet. default:30
  --weight_decay        The weight decay of loss. default:4e-5
  --lr_type             lr scheduler. default: cos. optional:exp/cos/step/fixed
  --use_dali            If this parameter exists, use dali module to load ImageNet data (benefit in training acceleration).
  --conv_type           Importance criterion of filters. Default: BlockL1Conv. optional: BlockRandomConv, DenseConv
  --pr_target           Pruning rate. default:0.5
  --full                If this parameter exists, prune fully-connected layer.
  --N                   Consecutive N kernels for removal (see paper for details).
  --rearrange           If this parameter exists, filters will be rearranged (see paper for details).

2)Filter Rearrangement

Table 2: Performance studies of our 1×N block sparsity with and without filter rearrangement (p=50%).

N = 2 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.900 89.296 Pruned Model
Rearrange 70.233 89.417 Pruned Model
N = 4 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.521 88.920 Pruned Model
Rearrange 69.579 88.944 Pruned Model
N = 8 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 69.206 88.608 Pruned Model
Rearrange 69.372 88.862 Pruned Model
N = 16 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.971 88.399 Pruned Model
Rearrange 69.352 88.708 Pruned Model
N = 32 Top-1 Acc. Top-5 Acc. Model Link
w/o Rearange 68.431 88.315 Pruned Model
Rearrange 68.762 88.425 Pruned Model

3)Encoding and Decoding Efficiency

Performance and latency comparison

Our sparse convolution implementation has been released to TVM community, which can be used by this script.

4)Contact

Any problem regarding this code re-implementation, please contact the first author: lmbxmu@stu.xmu.edu.cn or the third author: yuxinzhang@stu.xmu.edu.cn.

Any problem regarding the sparse convolution implementation, please contact the second author: xiamenlyc@gmail.com.