Code for our NeurIPS 2021 paper: (CHIP: CHannel Independence-based Pruning for Compact Neural Networks).
python calculate_feature_maps.py \
--arch resnet_56 \
--dataset cifar10 \
--data_dir ./data \
--pretrain_dir ./pretrain_model/resnet_56.pt \
--gpu 0
python calculate_ci.py \
--arch resnet_56
python prune_finetune_cifar.py \
--data_dir ./data \
--result_dir ./result/resnet_56/1 \
--arch resnet_56 \
--ci_dir ./CI_resnet_56 \
--batch_size 256 \
--epochs 200 \
--lr_type cos \
--learning_rate 0.01 \
--momentum 0.99 \
--weight_decay 0.001 \
--pretrain_dir ./pretrain_model/resnet_56.pt \
--sparsity [0.]+[0.4]*2+[0.5]*9+[0.6]*9+[0.7]*9 \
--gpu 0
python prune_finetune_imagenet.py \
--data_dir ./imagenet \
--result_dir ./result/resnet_50/1 \
--arch resnet_50 \
--ci_dir ./CI_resnet_50 \
--batch_size 256 \
--epochs 200 \
--lr_type cos \
--learning_rate 0.01 \
--momentum 0.99 \
--weight_decay 0.001 \
--pretrain_dir ./pretrain_model/resnet_50.pt \
--sparsity [xx] \
--gpu 0
TBD.
TBD.
Some codes are based on link.
TBD.