== SQLite Cipher == SQLite Cipher is an SQLite extension that provides transparent 256 bit AES encryption of database files. Pages are encrypted before being written to disk and are decrypted when read back. Encryption is provided by the OpenSSL crypto library. SQLite Cipher was developed by Stephen Lombardo at Zetetic LLC. sjlombardo at zetetic.net http://zetetic.net [Compiling] Building SQLite Cipher is almost the same as compiling a regular version of SQLite with three small exceptions: 1. building via 'amalgamation' isn't supported (where all sqlite source is merged into one file) 2. you must define SQLITE_HAS_CODEC 3. You need to link against a OpenSSL's libcrypto with sha256 support compiled in Example Static linking (replace /opt/local/lib with the path to libcrypto.a) ./configure CFLAGS="-DSQLITE_HAS_CODEC" LDFLAGS="/opt/local/lib/libcrypto.a" make Example Dynamic linking ./configure CFLAGS="-DSQLITE_HAS_CODEC -lcrypto" make [Encrypting a database] To specify an encryption passphrase for the database you can use a pragma. The passphrase you enter is hashed using sha256 and the result is used as the encryption key for the database. PRAGMA key = 'passphrase'; Alternately, you can specify an exact byte sequence using a blob literal. If you use this method it is your responsibility to ensure that the data you provide a 64 character hex string, which will be converted directly to 32 bytes (256 bits) of key data. PRAGMA key = "x'2DD29CA851E7B56E4697B0E1F08507293D761A05CE4D1B628663F411A8086D99'"; To encrypt a database programatically you can use the sqlite3_key function. The data provided in pKey is converted to an encryption key according to the same rules as PRAGMA key. int sqlite3_key(sqlite3 *db, const void *pKey, int nKey); PRAGMA key or sqlite3_key should be called as the first operation when a database is open. [Changing a database key] To change the encryption passphrase for an existing database you should use the rekey pragma after you've supplied the correct database password; PRAGMA key = 'passphrase'; -- start with the existing database passphrase PRAGMA rekey = 'new-passphrase'; -- rekey will reencrypt the database with the new passphrase The hexrekey pragma may be used to rekey to a specific binary value PRAGMA rekey = "x'2DD29CA851E7B56E4697B0E1F08507293D761A05CE4D1B628663F411A8086D99'"; This can be accomplished programtically by using sqlite3_rekey; sqlite3_rekey(sqlite3 *db, const void *pKey, int nKey) [Encrypting a standard database] To encrypt a standard (non-enrypted) database file, use the rekey methods described above, but don't provide an initial key.. [License] Copyright (c) 2008, ZETETIC LLC All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ZETETIC LLC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY ZETETIC LLC ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ZETETIC LLC BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. == End SQLite Cipher == This directory contains source code to SQLite: An Embeddable SQL Database Engine To compile the project, first create a directory in which to place the build products. It is recommended, but not required, that the build directory be separate from the source directory. Cd into the build directory and then from the build directory run the configure script found at the root of the source tree. Then run "make". For example: tar xzf sqlite.tar.gz ;# Unpack the source tree into "sqlite" mkdir bld ;# Build will occur in a sibling directory cd bld ;# Change to the build directory ../sqlite/configure ;# Run the configure script make ;# Run the makefile. make install ;# (Optional) Install the build products The configure script uses autoconf 2.61 and libtool. If the configure script does not work out for you, there is a generic makefile named "Makefile.linux-gcc" in the top directory of the source tree that you can copy and edit to suit your needs. Comments on the generic makefile show what changes are needed. The linux binaries on the website are created using the generic makefile, not the configure script. The windows binaries on the website are created using MinGW32 configured as a cross-compiler running under Linux. For details, see the ./publish.sh script at the top-level of the source tree. Contacts: http://www.sqlite.org/
scottmills/sqlcipher
SQLite Cipher is an SQLite extension that provides 256 bit AES encryption of database files.
C