/pypolar

Python modules for polarization changes using Jones or Mueller calculus

Primary LanguagePythonMIT LicenseMIT

pypolar

by Scott Prahl

pypi github conda zenodo

License testing docs Downloads

pypolar is a python module to model and visualize the polarization state of light as it travels through polarizers and birefringent elements. Some ellipsometry support is also included.

There are four numeric modules:

  • pypolar.fresnel - reflection and transmission calculations
  • pypolar.jones - management of polarization using the Jones calculus
  • pypolar.mueller - management of polarization using the Mueller calculus
  • pypolar.ellipsometry - ellipsometry support

A module for visualization:

  • pypolar.visualization - Routines to support visualization

and three modules that support symbolic algebra:

  • pypolar.sym_fresnel - Fresnel reflection and transmission
  • pypolar.sym_jones - Jones calculus
  • pypolar.sym_mueller - Mueller calculus

Detailed documentation is available at Read the Docs.

Installation

Use pip:

pip install pypolar

or conda:

conda install -c conda-forge pypolar

Usage

Consider modeling an optical isolator.

optical isolator diagram

Jones Matrix version

import numpy as np
import matplotlib.pyplot as plt
import pypolar.jones as jones
import pypolar.visualization as vis

J1 = jones.field_elliptical(np.pi/6,np.pi/6)
J2 = jones.op_linear_polarizer(0) @ J1
J3 = jones.op_quarter_wave_plate(np.pi/4) @ J2
J4 = jones.op_mirror() @ J3
J5 = jones.op_quarter_wave_plate(-np.pi/4) @ J4

fig = plt.figure(figsize=(8, 8))
ax = fig.add_subplot(111, projection='3d')
vis.draw_empty_sphere(ax)

vis.draw_jones_poincare(J1, ax, label='  start', color='red', va='center')
vis.draw_jones_poincare(J2, ax, label='  after Polarizer', color='blue', va='center')
vis.draw_jones_poincare(J3, ax, label='  after QWP', color='blue', va='center')
vis.draw_jones_poincare(J4, ax, label='  after mirror', color='blue', va='center')
vis.draw_jones_poincare(J5, ax, label='  final', color='red', va='center')

vis.join_jones_poincare(J1, J2, ax, color='blue', lw=2, linestyle=':')
vis.join_jones_poincare(J2, J3, ax, color='blue', lw=2, linestyle=':')
vis.join_jones_poincare(J3, J4, ax, color='blue', lw=2, linestyle=':')
vis.join_jones_poincare(J4, J5, ax, color='blue', lw=2, linestyle=':')
plt.show()

will produce

Mueller Matrix version

import numpy as np
import pypolar.mueller as mueller

A = mueller.stokes_right_circular()       # incident light
B = mueller.op_linear_polarizer(np.pi/4)  # polarizer at 45°
C = mueller.op_quarter_wave_plate(0)      # QWP with fast axis horizontal
D = mueller.op_mirror()                   # first surface mirror
E = mueller.op_quarter_wave_plate(0)      # QWP still has fast axis horizontal
F = mueller.op_linear_polarizer(-np.pi/4) # blocks at -45° travelling backwards
F @ E @ D @ C @ B @ A

produces

array([0., 0., 0., 0.])

License

pypolar is licensed under the terms of the MIT license.