Pytorch Solution of Event Extraction Task using BERT on ACE 2005 corpus
-
Prepare ACE 2005 dataset.
-
Use nlpcl-lab/ace2005-preprocessing to preprocess ACE 2005 dataset in the same format as the data/sample.json. Then place it in the data directory as follows:
├── data │ └── test.json │ └── dev.json │ └── train.json │...
-
Install the packages.
pip install pytorch==1.0 pytorch_pretrained_bert==0.6.1 numpy
python train.py
python eval.py --model_path=latest_model.pt
Method | Trigger Classification (%) | Argument Classification (%) | ||||
---|---|---|---|---|---|---|
Precision | Recall | F1 | Precision | Recall | F1 | |
JRNN | 66.0 | 73.0 | 69.3 | 54.2 | 56.7 | 55.5 |
JMEE | 76.3 | 71.3 | 73.7 | 66.8 | 54.9 | 60.3 |
This model (BERT base) | 63.4 | 71.1 | 67.7 | 48.5 | 34.1 | 40.0 |
The performance of this model is low in argument classification even though pretrained BERT model was used. The model is currently being updated to improve the performance.