/pycop

Python library for multivariate dependence modelling with Copulas

Primary LanguagePythonMIT LicenseMIT

PyPi version Downloads License

Overview

Pycop is the most complete tool for modeling multivariate dependence with Python.The package provides methods such as estimation, random sample generation, and graphical representation for commonly used copula functions. The package supports the use of mixture models defined as convex combinations of copulas. Other methods based on the empirical copula such as the non-parametric Tail Dependence Coefficient are given.

Some of the features covered:

  • Elliptical copulas (Gaussian & Student) and common Archimedean Copulas functions
  • Mixture model of multiple copula functions (up to 3 copula functions)
  • Multivariate random sample generation
  • Empirical copula method
  • Parametric and Non-parametric Tail Dependence Coefficient (TDC)

Available copula function

Copula Bivariate
Graph & Estimation
Multivariate
Simulation
Mixture
Gaussian
Student
Clayton
Rotated Clayton
Gumbel
Rotated Gumbel
Frank
Joe
Rotated Joe
Galambos
Rotated Galambos
BB1
BB2
FGM
Plackett
AMH

Usage

Install pycop using pip

pip install pycop

Examples

Open In Colab Estimations on msci returns

Open In Colab Graphical Representations

Open In Colab Simulations

Table of Contents

Graphical Representation

We first create a copula object by specifying the copula familly

from pycop import archimedean
cop = archimedean(family="clayton")

Plot the cdf and pdf of the copula.

3d plot

cop = archimedean(family="gumbel")

cop.plot_cdf([2], type="3d", Nsplit=100 )
cop.plot_pdf([2], type="3d", Nsplit=100, cmap="cividis" )

Contour plot

plot the contour

cop = archimedean(family="plackett")

cop.plot_cdf([2], type="contour", Nsplit=100 )
cop.plot_pdf([2], type="contour", Nsplit=100, )

It is also possible to add specific marginals

cop = archimedean.archimedean(family="clayton")

from scipy.stats import norm


marginals = [
    {
        "distribution": norm, "loc" : 0, "scale" : 0.8,
    },
    {
        "distribution": norm, "loc" : 0, "scale": 0.6,
    }]

cop.plot_mpdf([2], marginals, type="3d",Nsplit=100,
            rstride=1, cstride=1,
            antialiased=True,
            cmap="cividis",
            edgecolor='black',
            linewidth=0.1,
            zorder=1,
            alpha=1)

lvls = [0.02, 0.05, 0.1, 0.2, 0.3]

cop.plot_mpdf([2], marginals, type="contour", Nsplit=100,  lvls=lvls)

Mixture plot

mixture of 2 copulas

from pycop.mixture import mixture

cop = mixture(["clayton", "gumbel"])
cop.plot_pdf([0.2, 2, 2],  type="contour", Nsplit=40,  lvls=[0.1,0.4,0.8,1.3,1.6] )
# plot with defined marginals
cop.plot_mpdf([0.2, 2, 2], marginals, type="contour", Nsplit=50)

cop = mixture(["clayton","gaussian", "gumbel"])
cop.plot_pdf([1/3, 1/3, 1/3, 2, 0.5, 4],  type="contour", Nsplit=40,  lvls=[0.1,0.4,0.8,1.3,1.6] )
cop.plot_mpdf([1/3, 1/3, 1/3, 2, 0.5, 2], marginals, type="contour", Nsplit=50)

Simulation

Gaussian

from scipy.stats import norm
from pycop import simulation

n = 2 # dimension
m = 1000 # sample size

corrMatrix = [[1, 0.8], [0.8, 1]]
u1, u2 = simulation.simu_gaussian(n, m, corrMatrix)

Adding gaussian marginals, (using distribution.ppf from scipy.statsto transform uniform margin to the desired distribution)

u1 = norm.ppf(u1)
u2 = norm.ppf(u2)

Student

u1, u2 = simulation.simu_tstudent(n, m, corrMatrix, nu=1)

Archimedean

List of archimedean cop available

u1, u2 = simulation.simu_archimedean("gumbel", n, m, theta=2)
u1, u2 = 1 - u1, 1 - u2

Rotated

u1, u2 = 1 - u1, 1 - u2

High dimension

n = 3       # Dimension
m = 1000    # Sample size

corrMatrix = [[1, 0.9, 0], [0.9, 1, 0], [0, 0, 1]]
u = simulation.simu_gaussian(n, m, corrMatrix)
u = norm.ppf(u)

u = simulation.simu_archimedean("clayton", n, m, theta=2)
u = norm.ppf(u)

Mixture simulation

Simulation from a mixture of 2 copulas

n = 3
m = 2000

combination = [
    {"type": "clayton", "weight": 1/3, "theta": 2},
    {"type": "gumbel", "weight": 1/3, "theta": 3}
]

u = simulation.simu_mixture(n, m, combination)
u = norm.ppf(u)

Simulation from a mixture of 3 copulas

corrMatrix = [[1, 0.8, 0], [0.8, 1, 0], [0, 0, 1]]


combination = [
    {"type": "clayton", "weight": 1/3, "theta": 2},
    {"type": "student", "weight": 1/3, "corrMatrix": corrMatrix, "nu":2},
    {"type": "gumbel", "weight": 1/3, "theta":3}
]

u = simulation.simu_mixture(n, m, combination)
u = norm.ppf(u)

Estimation

Estimation available : CMLE

Canonical Maximum Likelihood Estimation (CMLE)

Import a sample with pandas

import pandas as pd
import numpy as np

df = pd.read_csv("data/msci.csv")
df.index = pd.to_datetime(df["Date"], format="%m/%d/%Y")
df = df.drop(["Date"], axis=1)

for col in df.columns.values:
    df[col] = np.log(df[col]) - np.log(df[col].shift(1))

df = df.dropna()
from pycop import estimation, archimedean

cop = archimedean.archimedean("clayton")
param, cmle = estimation.fit_cmle(cop, df[["US","UK"]])

clayton estim: 0.8025977727691012

Tail Dependence coefficient

Theoretical TDC

cop.LTDC(theta=param)
cop.UTDC(theta=param)

Non-parametric TDC

Create an empirical copula object

from pycop import empirical

cop = empirical(df[["US","UK"]])

Compute the non-parametric Upper TDC (UTDC) or the Lower TDC (LTDC) for a given threshold:

cop.LTDC(0.01) # i/n = 1%
cop.UTDC(0.99) # i/n = 99%

Optimal Empirical TDC

Returns the optimal non-parametric TDC based on the heuristic plateau-finding algorithm from Frahm et al (2005) "Estimating the tail-dependence coefficient: properties and pitfalls"

cop.optimal_tdc("upper")
cop.optimal_tdc("lower")