This is an experimental implementation of Faster R-CNN using Chainer based on Ross Girshick's py-faster-rcnn codes.
Using anaconda is strongly recommended.
-
Python 2.7.6+, 3.4.3+, 3.5.1+
- Chainer 1.9.1+
- NumPy 1.9, 1.10, 1.11
- Cython 0.23+
- OpenCV 2.9+, 3.1+
pip install numpy
pip install cython
pip install chainer
# for python3
conda install -c https://conda.binstar.org/menpo opencv3
# for python2
conda install opencv
There's a known problem in cpu_nms.pyx. But a workaround has been posted here (and see also the issue posted to the original py-faster-rcnn).
wget https://www.dropbox.com/s/2fadbs9q50igar8/VGG16_faster_rcnn_final.model?dl=0
mv VGG16_faster_rcnn_final.model?dl=0 VGG16_faster_rcnn_final.model
cd lib
python setup.py build_ext -i
wget http://vision.cs.utexas.edu/voc/VOC2007_test/JPEGImages/004545.jpg
python forward.py --img_fn 004545.jpg --gpu 0
--gpu 0
turns on GPU. When you turn off GPU, use --gpu -1
or remove --gpu
option.
will be updated soon