/FAVD

Replication package for the paper "Featherweight Assisted Vulnerability Discovery"

Primary LanguageRMIT LicenseMIT

source under MIT license data under CC BY 4.0 license DOI

FAVD: Featherweight Assisted Vulnerability Discovery

This repository contains the replication package for the paper "Featherweight Assisted Vulnerability Discovery", David Binkley, Leon Moonen, Sibren Isaacman, Information and Software Technology, 2022, 106844, ISSN 0950-5849, DOI: 10.1016/j.infsof.2022.106844. https://www.sciencedirect.com/science/article/pii/S0950584922000209.

The replication package is archived on Zenodo with DOI: 10.5281/zenodo.5957264. The source code is distributed under the MIT license, the data is distributed under the CC BY 4.0 license.

Repository Organization

The overall process consists of three steps, organized as three directories:

  1. gathering of the labeled function names that are used as the source for step 2, in names
  2. dangerous word identification, in dangerous-words
  3. analysis of the data gathered during step 2, in analysis

The directory Model holds a copy of the pre-trained LAVDNN model as provided by the authors at https://github.com/StablelJay/LAVDNN/raw/master/Model/model_of_LAVDNN

Requirements

The following tools are required for the replication:

  • python >= 3.5
  • R
  • tcsh
  • csvcut from csvkit
  • cntk as keras backend for running the LAVDNN model

In addition, the following python packages are needed

Finally, for the analysis in step 3, the following R libraries are needed:

  • agricolae, ggplot2, reshape2, xtable

Citation

If you build on this data or code, please cite this work by referring to the paper:

@article{binkley2022:featherweight,
   title = {Featherweight assisted vulnerability discovery},
   author = {David Binkley and Leon Moonen and Sibren Isaacman},
   journal = {Information and Software Technology},
   pages = {106844},
   year = {2022},
   issn = {0950-5849},
   doi = {https://doi.org/10.1016/j.infsof.2022.106844},
   url = {https://www.sciencedirect.com/science/article/pii/S0950584922000209},
   copyright = {Open Access},
   publisher = {Elsevier},
}

Acknowledgement

Part of this work has been financially supported by the Research Council of Norway through the secureIT project (RCN contract #288787).