/softclt

Primary LanguagePython

Soft Contrastive Learning for Time Series

Seunghan Lee, Taeyoung Park, Kibok Lee


This repository contains the official implementation for the paper Soft Contrastive Learning for Time Series

This work is accepted in


1. SoftCLT + TS2Vec

chdir softclt_ts2vec

Please refer to https://github.com/yuezhihan/ts2vec for

  • (1) Requirements
  • (2) Dataset preparation

Code Example

1) Standard Classification

UCR 128 datasets for univariate TS classification

bs = 8
data = 'BeetleFly'
# tau_inst = xx
# tau_temp = xx

!python train.py {data} --loader='UCR' --batch-size {bs} --eval \
    --tau_inst {tau_inst} --tau_temp {tau_temp} 

UEA 30 datasets for multivariate TS classification

bs = 8
data = 'Cricket'
# tau_inst = xx
# tau_temp = xx

!python train.py {data} --loader='UEA' --batch-size {bs} --eval \
    --tau_inst {tau_inst} --tau_temp {tau_temp} 

For optimal hyperparameter setting for each dataset, please refer to hyperparameters/cls_hyperparams.csv


2) Semi-supervised Classification

data = 'Epilepsy'
# bs = xx
# tau_inst = xx
# tau_temp = xx

!python train.py {data} --loader='semi' --batch-size {bs} --eval \
    --tau_inst {tau_inst} --tau_temp {tau_temp}

For optimal hyperparameter setting for each dataset, please refer to

  • hyperparameters/semi_cls_1p_hyperparams.csv
  • hyperparameters/semi_cls_5p_hyperparams.csv

3) Anomaly Detection

( Note that we only use temporal CL for anomaly detection task )

data = 'yahoo'
# bs = xxx
# tau_temp = xxx

!python train.py {data} --loader='anomaly' --batch-size {bs} --eval \
	--lambda_=0 --tau_temp={tau_temp}

For optimal hyperparameter setting for each dataset, please refer to

  • hyperparameters/ad_hyperparams.csv

2. SoftCLT + TS-TCC/CA-TCC

chdir softclt_catcc

Please refer to https://github.com/emadeldeen24/TS-TCC and https://github.com/emadeldeen24/CA-TCC for

  • (1) Requirements
  • (2) Dataset preparation

1) Semi-supervised Classification

dataset = 'Epilepsy'
# tau_inst = xxx
# tau_temp = xxx
# lambda_ = xxx
# lambda_aux = xxx

#############################################################
# TS-TCC : (1)~(2)
# CA-TCC : (1)~(7)
#############################################################
# (1) Pretrain
!python main_semi_classification.py --selected_dataset {dataset} --training_mode "self_supervised" \
		--tau_temp {tau_temp} --tau_inst {tau_inst} \
		--lambda_ {lambda_} --lambda_aux {lambda_aux
                    
# (2) Finetune Classifier 
!python3 main_semi_classification.py --selected_dataset {dataset} --training_mode "train_linear" \
    --tau_temp {tau_temp} --tau_inst {tau_inst} \
    --lambda_ {lambda_} --lambda_aux {lambda_aux} 
                        
# (3) Finetune Classifier ( with partially labeled datasets )
# (4) Finetune Encoder ( with partially labeled datasets )
# (5) Generate Pseudo-labels
# (6) Supervised CL
# (7) Finetune Classifier
labeled_pc = 1

for mode_ in ['ft_linear','ft','gen_pseudo_labels','SupCon','train_linear_SupCon']:
  !python3 main_semi_classification.py --selected_dataset {dataset} --training_mode {mode_} \
      --tau_temp {tau_temp} --tau_inst {tau_inst} \
      --lambda_ {lambda_} --lambda_aux {lambda_aux} \
      --data_perc {labeled_pc}     

2) Transfer Learning

  • Source dataset: SleepEEG
  • Target dataset: Epilepsy, FD-B, Gesture, EMG
source_data = 'SleepEEG'
target_data = 'Epilepsy'
epoch_pretrain = 40
# tau_inst = xx
# tau_temp = xx
# lambda = xx
# lambda_aux = xx

!python3 main_pretrain_TL.py --selected_dataset {source_data} \
    --tau_temp {tau_temp} --tau_inst {tau_inst} \
    --num_epochs {epoch_pretrain} \
    --lambda_ {lambda_} --lambda_aux {lambda_aux}

tm = 'fine_tune' # 'linear_probing'
finetune_epoch = 50 # 100,200,300,400

!python3 main_finetune_TL.py --training_mode {tm} \
      --source_dataset {source_data} --target_dataset {target_data} \
      --tau_temp {tau_temp} --tau_inst {tau_inst} \
      --load_epoch {load_epoch} \
      --num_epochs_finetune {ft_epoch}\
      --lambda_ {lambda_} --lambda_aux {lambda_aux}

Contact

If you have any questions, please contact seunghan9613@yonsei.ac.kr


Acknowledgement

We appreciate the following github repositories for their valuable code base & datasets: