Note: 同一论文在不同分类目录下可能会出现多次
-
TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
-
Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions
-
Intel® nGraph™: An Intermediate Representation, Compiler, and Executor for Deep Learning
-
MLIR: A Compiler Infrastructure for the End of Moore’s Law
模块化设计,可以整合不同编译器的DL编译器框架
-
DLVM: A MODERN COMPILER INFRASTRUCTURE FOR DEEP LEARNING SYSTEMS
-
Glow: Graph Lowering Compiler Techniques for Neural Networks
-
Halide用于图像处理领域的算子生成,首次提出计算和调度分离的**,后被TVM拓展到深度学习领域
-
Stripe: Tensor Compilation via the Nested Polyhedral Model
用polyhedral进行算子生成
一篇很好的DL编译器的survey,总结了DL编译器的设计框架
比较了Halide, XLA, TVM, TC等几种编译器的性能
-
UC伯克利AI-Sys课程AI compiler sides
依次介绍了Halide/TVM/TC三个工作,勾勒出DL compilers发展的脉络。Halide把调度从硬件的复杂性中抽象出来;TVM自动地为不同硬件优化算子调度;TC为算子全自动代码生成,完全不同考虑硬件。
- TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
- Relay: A New IR for Machine Learning Frameworks
- Relay: A High-Level Compiler for Deep Learning
TVM的第二代high-level IR,类似于编程语言,设计了语法规则,引入了let-binding机制。DL背景的开发者可以使用data flow graph来定义计算图,PL(Program Language)背景的研究人员可以使用let binding来定义计算图。Let binding机制通过compute scope解决了AST的二义性问题。
TVM设计的一套通用的后端设计方案,设计了指令集,可以基于FPGA实现。VTA与Relay, TVM组成一套完整的end-to-end的DL编译栈。TVM基于VTA尝试了hardware-software codesign.
-
Automatically tuned linear algebra software(ATLAS, 1998)
-
OpenTuner: An extensible framework for program autotuning(2014)
-
Automatically Scheduling Halide Image Processing Pipelines(2016)
-
Tensor Comprehensions: Framework-Agnostic High-Performance Machine Learning Abstractions(2018.2)
-
Learning to Optimize Tensor Programs (Auto-TVM, 2018.5)
-
Learning to Optimize Halide with Tree Search and Random Programs(2019)
下面两篇都是基于TVM做的template-free工作
-
Ansor: Generating High-Performance Tensor Programs for Deep Learning(2020.6)
把schedule分成sketch和annotation两层,sketch相当于TVM的schedule template,Ansor可以先搜索出sketch,再搜索annotation。
用强化学习来做schedule搜索
上面面三篇公众号文章介绍Poly的一些基本原理和在DL领域中的应用,作者是要术甲杰,是Poly研究领域的博士
同样是要术甲杰写的介绍Pluto算法的文章
用shared memory来实现更激进的operator fusion策略
- Automatic differentiation in ML: Where we are and where we should be going
- Automatic Differentiation in Machine Learning: a Survey
两篇关于自动微分的survey
schedule和execution阶段进行联合优化
阿里杨军的系列文章
用TVM在神威超算上生成算子
TensorFow中的图优化