stock copula

任务

第一步

将收益率进行对数化处理得到收益率序列,对收益率序列进行JB检验,ADF检验和ARCH-LM(10)检验

第二步

对各收益率序列先建立ARMA模型拟合序列的条件均值(按照 AIC准则选择最佳的ARMA模型进行拟合)

第三步

用GARCH(1,1)拟合收益率的残差序列,并对GARCH的残差进行ADF,BDS检验和CvM检验

第四步

对残差序列进行标准化处理再进行概率积分变换(假设为t分布)。然后计算任意两国股指序列间的Kendall系数,得到配对图

第六步

构建Copula树:每个节点是一个股指收益率序列,根据极大似然估计及AIC准则确定树中每条边对应的Copula函数类型。以第四步计算的相关性作为边权值,建立最大生成树

第八步

评价最大生成树中每条边(对应一个Copula模型)的拟合结果(用AIC、BIC和loss值三个指标)

第一步

对收益率

SSEC

  • JB检验: Jarque_beraResult(statistic=5922.418016821695, pvalue=0.0)
  • ADF检验: (-9.840797680673846, 4.7594468861661446e-17, 27, 2889, {'1%': -3.432615531267606, '5%': -2.8625409589326205, '10%': -2.5673028391515254}, -21733.928302635803)
  • ARCH效应检验:Chi-squared = 380.56, df = 10, p-value < 2.2e-16

SCI

  • JB检验: Jarque_beraResult(statistic=1922.9291939615061, pvalue=0.0)
  • ADF检验: (-14.2597311275576, 1.4334971007230296e-26, 13, 2903, {'1%': -3.4326045958386953, '5%': -2.862536129260207, '10%': -2.567300267867621}, -20574.45350851521)
  • ARCH效应检验:Chi-squared = 357.91, df = 10, p-value < 2.2e-16

FTSE100

  • JB检验: Jarque_beraResult(statistic=13094.463375384035, pvalue=0.0)
  • ADF检验: (-16.826211955918293, 1.167669855767656e-29, 12, 3017, {'1%': -3.4325193312999036, '5%': -2.8624984712561274, '10%': -2.567280219110819}, -23969.535430552045)
  • ARCH效应检验:Chi-squared = 698.07, df = 10, p-value < 2.2e-16

DAX30

  • JB检验: Jarque_beraResult(statistic=7339.559305081821, pvalue=0.0)
  • ADF检验: (-16.327113802190908, 3.08674593815361e-29, 10, 3033, {'1%': -3.4325078777082796, '5%': -2.8624934125717725, '10%': -2.567277525930013}, -22658.135809125994)
  • ARCH效应检验:Chi-squared = 552.41, df = 10, p-value < 2.2e-16

CAC40

  • JB检验: Jarque_beraResult(statistic=8109.087761470604, pvalue=0.0)
  • ADF检验: (-20.10586187025487, 0.0, 7, 3065, {'1%': -3.432485329568554, '5%': -2.8624834537243493, '10%': -2.5672722239727066}, -22955.17483627421)
  • ARCH效应检验:Chi-squared = 542.23, df = 10, p-value < 2.2e-16

第二步

ARIMA最优模型

SSEC

ARIMA(5,0,3) with zero mean 

Coefficients:
         ar1     ar2     ar3     ar4      ar5      ma1     ma2      ma3
      0.2987  -0.952  0.1237  0.0157  -0.0173  -0.2660  0.9336  -0.0781
s.e.  0.7602   0.158  0.7119  0.0465   0.0267   0.7602  0.1328   0.7043

sigma^2 = 3.146e-05:  log likelihood = 10984.84
AIC=-21951.67   AICc=-21951.61   BIC=-21897.87

SCI

ARIMA(1,0,1) with zero mean 

Coefficients:
          ar1     ma1
      -0.8882  0.9166
s.e.   0.0421  0.0364

sigma^2 = 4.716e-05:  log likelihood = 10391.47
AIC=-20776.95   AICc=-20776.94   BIC=-20759.01

FTSE100

ARIMA(5,0,5) with zero mean 

Coefficients:
          ar1     ar2      ar3     ar4     ar5     ma1      ma2     ma3
      -0.1726  0.2969  -0.3699  0.3401  0.7752  0.1639  -0.3170  0.3652
s.e.   0.0850  0.0714   0.1144  0.0638  0.0748  0.0814   0.0646  0.1123
          ma4      ma5
      -0.3882  -0.7517
s.e.   0.0619   0.0880

sigma^2 = 1.966e-05:  log likelihood = 12123.78
AIC=-24225.56   AICc=-24225.47   BIC=-24159.38

DAX30

ARIMA(0,0,0) with zero mean 

sigma^2 = 3.161e-05:  log likelihood = 11452.01
AIC=-22902.01   AICc=-22902.01   BIC=-22895.99

CAC40

ARIMA(0,0,0) with zero mean 

sigma^2 = 3.081e-05:  log likelihood = 11600.13
AIC=-23198.25   AICc=-23198.25   BIC=-23192.22

第三步

用GARCH拟合ARIMA最优模型的残差

SSEC

  • GARCH
        Estimate  Std. Error  t value Pr(>|t|)    
mu     1.269e-04   7.230e-05    1.755  0.07920 .  
omega  2.527e-07   8.340e-08    3.030  0.00245 ** 
alpha1 5.609e-02   8.540e-03    6.567 5.12e-11 ***
beta1  9.378e-01   8.659e-03  108.308  < 2e-16 ***
shape  4.580e+00   4.070e-01   11.255  < 2e-16 ***
  • ADF检验:Dickey-Fuller = -13.721, Lag order = 14, p-value = 0.01(实际比这个小)
  • BDS检验
Epsilon for close points =  0.0028 0.0056 0.0084 0.0112 

Standard Normal = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0084 ] [ 0.0112 ]
[ 2 ]     4.9865     7.0757     9.0644    10.4787
[ 3 ]     7.2637     9.9598    12.0665    13.7297

p-value = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0084 ] [ 0.0112 ]
[ 2 ]          0          0          0          0
[ 3 ]          0          0          0          0
  • CVM检验:omega2 = 962.98, p-value < 2.2e-16

SCI

  • GARCH
        Estimate  Std. Error  t value Pr(>|t|)    
mu     1.385e-04   9.827e-05    1.409  0.15883    
omega  5.991e-07   1.867e-07    3.208  0.00133 ** 
alpha1 5.881e-02   8.714e-03    6.749 1.49e-11 ***
beta1  9.292e-01   1.004e-02   92.556  < 2e-16 ***
shape  5.683e+00   6.067e-01    9.366  < 2e-16 ***
  • ADF检验:Dickey-Fuller = -13.723, Lag order = 14, p-value = 0.01(实际比这个小)
  • BDS检验
Epsilon for close points =  0.0034 0.0069 0.0103 0.0137 

Standard Normal = 
      [ 0.0034 ] [ 0.0069 ] [ 0.0103 ] [ 0.0137 ]
[ 2 ]     4.0122     5.6464     7.7869     9.8539
[ 3 ]     6.4152     8.3825    10.9933    13.2679

p-value = 
      [ 0.0034 ] [ 0.0069 ] [ 0.0103 ] [ 0.0137 ]
[ 2 ]      1e-04          0          0          0
[ 3 ]      0e+00          0          0          0
  • CVM检验:omega2 = 960.45, p-value < 2.2e-16

FTSE100

  • GARCH
Coefficient(s):
        Estimate  Std. Error  t value Pr(>|t|)    
mu     2.744e-04   5.851e-05    4.690 2.74e-06 ***
omega  6.905e-07   1.672e-07    4.129 3.64e-05 ***
alpha1 1.370e-01   2.068e-02    6.622 3.56e-11 ***
beta1  8.305e-01   2.431e-02   34.161  < 2e-16 ***
shape  6.059e+00   6.654e-01    9.105  < 2e-16 ***
  • ADF检验:Dickey-Fuller = -13.919, Lag order = 14, p-value = 0.01(实际比这个小)
  • BDS检验
Epsilon for close points =  0.0022 0.0044 0.0066 0.0089 

Standard Normal = 
      [ 0.0022 ] [ 0.0044 ] [ 0.0066 ] [ 0.0089 ]
[ 2 ]    12.0353    12.6627    12.8609    13.2519
[ 3 ]    16.0576    16.4353    16.3417    16.5075

p-value = 
      [ 0.0022 ] [ 0.0044 ] [ 0.0066 ] [ 0.0089 ]
[ 2 ]          0          0          0          0
[ 3 ]          0          0          0          0
  • CVM检验:omega2 = 1005, p-value < 2.2e-16

DAX30

  • GARCH
        Estimate  Std. Error  t value Pr(>|t|)    
mu     3.512e-04   7.154e-05    4.909 9.17e-07 ***
omega  5.466e-07   1.692e-07    3.230  0.00124 ** 
alpha1 1.147e-01   1.819e-02    6.303 2.92e-10 ***
beta1  8.777e-01   1.813e-02   48.398  < 2e-16 ***
shape  4.999e+00   4.935e-01   10.129  < 2e-16 ***
  • ADF检验:Dickey-Fuller = -14.072, Lag order = 14, p-value = 0.01(实际比这个小)
  • BDS检验
Epsilon for close points =  0.0028 0.0056 0.0084 0.0112 

Standard Normal = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0084 ] [ 0.0112 ]
[ 2 ]    10.0683     9.4842     9.8153     9.2503
[ 3 ]    14.4560    13.5235    13.6332    13.3037

p-value = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0084 ] [ 0.0112 ]
[ 2 ]          0          0          0          0
[ 3 ]          0          0          0          0
  • CVM检验:omega2 = 1014.8, p-value < 2.2e-16

CAC40

  • GARCH
        Estimate  Std. Error  t value Pr(>|t|)    
mu     3.409e-04   6.835e-05    4.987 6.12e-07 ***
omega  6.014e-07   1.647e-07    3.652 0.000261 ***
alpha1 1.372e-01   2.021e-02    6.791 1.11e-11 ***
beta1  8.548e-01   1.933e-02   44.210  < 2e-16 ***
shape  5.192e+00   4.897e-01   10.604  < 2e-16 ***
  • ADF检验:Dickey-Fuller = -14.861, Lag order = 14, p-value = 0.01(实际比这个小)
  • BDS检验
Epsilon for close points =  0.0028 0.0056 0.0083 0.0111 

Standard Normal = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0083 ] [ 0.0111 ]
[ 2 ]    12.7196    11.4585    11.0073    10.0493
[ 3 ]    18.3638    16.3068    15.1014    13.9452

p-value = 
      [ 0.0028 ] [ 0.0056 ] [ 0.0083 ] [ 0.0111 ]
[ 2 ]          0          0          0          0
[ 3 ]          0          0          0          0
  • CVM检验:omega2 = 1014.6, p-value < 2.2e-16

第四步

Kendall相关度

                SSEC_PIT      SCI_PIT  FTSE100_PIT    DAX30_PIT    CAC40_PIT
SSEC_PIT     1.000000000  0.726898701  0.010906220 -0.005301217  0.009875415
SCI_PIT      0.726898701  1.000000000  0.005022354 -0.009410330  0.002810261
FTSE100_PIT  0.010906220  0.005022354  1.000000000  0.002791451 -0.014208841
DAX30_PIT   -0.005301217 -0.009410330  0.002791451  1.000000000  0.114052574
CAC40_PIT    0.009875415  0.002810261 -0.014208841  0.114052574  1.000000000

配对图

配对图

第六步

最大生成树的边参数

  • SSEC-SCI: family = t, rotation = 0, parameters = 0.99, 4.97(边权值0.726976294)
  • DAX30-CAC40: family = bb1, rotation = 180, parameters = 0, 6.56(边权值0.116881645)
  • FTSE100-CAC40: family = t, rotation = 0, parameters = 0.97, 5.07(边权值-0.014370139)
  • SSEC-FTSE100: family = t, rotation = 0, parameters = 0.97, 5.07(边权值0.011138057)

最大生成树结构

copula生成树

第八步

上一步建立的copula模型指标:

  • SSEC-SCI:AIC -9105.955 BIC -9093.998
  • DAX30-CAC40: AIC -5490.886 BIC -5478.929
  • FTSE100-CAC40:AIC -5622.067 BIC -5610.11
  • SSEC-FTSE100: AIC -4696.484 BIC -4684.528

以上模型负对数似然都是收敛到负无穷