AI-Powered Content Summarizer

This project features a Flask-based web application that integrates various NLP models to generate text summaries. Users can input text and receive summaries in formats like paragraphs or bullet points, utilizing models such as BART, Llama 2, and Ollama Llama 3, with support for fine-tuning using LoRA.

Features

  • Summarization using BART, Llama 2, and Ollama Llama 3.
  • Choose between paragraph or bullet points format.
  • Adjustable summary lengths.
  • Efficient fine-tuning with LoRA.

Installation

Prerequisites

  • Python 3.7+
  • pip

Clone and Install

git clone https://github.com/shahinur-alam/AI-Powered-Content-Summarizer.git
cd AI-Powered-Content-Summarizer
pip install -r requirements.txt

Run the Application

python content_summarizer.py

The app will run at http://127.0.0.1:5000.

Usage

  • Go to http://127.0.0.1:5000.
  • Input your text.
  • Select summary type (short/long) and format (paragraph/bullet points).
  • Submit to get the summary.

File Structure

.
├── content_summarizer.py          # Main app
├── content_summarizer_Llama3.py
├── content_summarizer_Llama27_finetune.py  
└── templates/
    └── index.html  # Web interface

Customization

  • GET /: Render input form.
  • POST /: Summarize input text.

Customization

Modify the summarize_text() function in app.py to adjust summary length or format.