nmpc_performance.mp4
nmpc_vs_method.mp4
Installation of acados according to the following instructions: https://docs.acados.org/python_interface/index.html
Current (21 August 2023) version on imitation library does not yet support Gymnasium. So we are using our own fork of it with necessary modifications.
After cloning this repo:
git submodule init
git submodule update
cd imitation
pip install -e .
Hyper-parameter | Value |
---|---|
COMMON: Learning Rate | 0.0003 |
COMMON: Number of Expert Demos | 100 |
COMMON: Number of Training Steps | 2,000,000 |
PPO: Net. Arch. | pi:[256, 256] vf:[256, 256] |
PPO: Batch Size | 64 |
SAC: Net. Arch. | pi:[256, 256] qf:[256, 256] |
SAC: Batch Size | 256 |
BC: Net. Arch. | pi:[32, 32] qf:[32, 32] |
BC: Batch Size | 32 |
DAgger: Online Episodes | 500 |
Density: Kernel type | Gaussian |
Density: Kernel bandwidth | 0.5 |
Density: Net. Arch. | pi:[256, 256] qf:[256, 256] |
GAIL: Reward Net Arch. | [32, 32] |
GAIL: Policy Net Arch. | pi:[256, 256] qf:[256, 256] |
GAIL: Policy Replay Buffer Capacity | 512 |
GAIL: Batch Size | 128 |
AIRL: Reward Net Arch. | [32, 32] |
AIRL: Policy Net Arch. | pi:[256, 256] qf:[256, 256] |
AIRL: Batch Size | 128 |
AIRL: Policy Replay Buffer Capacity | 512 |
Parameter | Value |
---|---|
Hessian Approximation | Gauss-Newton |
SQP type | real-time iterations |
|
|
|
|
diag( |
|
diag( |
|
diag( |
|
|
diag( |
|
|
|
Parameter | Value |
---|---|
|
|
diag( |
|
diag( |