-
resized original images
(d1)512 X 512 https://www.kaggle.com/xhlulu/panda-resized-train-data-512x512 -
tiled images
(d2) (one img)level 1, 128X128X16(resize to 512X512) https://www.kaggle.com/muerbingsha/pandatiled
(d3) (tiles)level 1, 128X128X16(resize to 512X512) https://www.kaggle.com/muerbingsha/pandatiledsingle
(d4) level 2, 256X256X36 (resize to 512X512) based on original competition data (for kaggle kernels)
(d5) level 2, 256X256X36
(d6) level 2, 256X256X36 (resize to 512X512) based on the cropped version https://www.kaggle.com/lopuhin/panda-2020-level-1-2 since colab cannot host original competition data (for colab kernels)
(d7) dynanic tiling -
remove pen marks
EfficienetNet-B0
EfficienetNet-B4
serenet50
CrossEntropyLoss
MSELoss
Softmax + CrossEntropyLoss
BCELossWithLogits
Dataset | image size | Model | loss | LB | Info |
---|---|---|---|---|---|
d1 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.59 | 4 epochs + all data |
d1 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.62 | 10 epochs + all data + ReduceLROnPlateau(cohen) |
d1 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.62 | 10 epochs + all data + ReduceLROnPlateau(loss) |
d2 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.64 | 4 epochs + all data |
d2 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.70 | 20 epochs + all data + ReduceLROnPlateau(loss) |
d2 | 512X512 | EfficientNet-B4 | Softmax + CrossEntropyLoss | 0.71 | 30 epochs + all data + ReduceLROnPlateau(loss) |
d1 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.2 | 1 epoch + all data |
d1 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.49 | 10 epochs + 1000 samples |
d1 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.58 | 10 epochs + 2000 samples |
d1 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.61 | 20 epochs + 2000 samples + ReduceLROnPlateau(cohen) |
d1 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.65 | 20 epochs + all samples + ReduceLROnPlateau |
d2 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | 0.70 | 20 epochs + all samples + ReduceLROnPlateau |
d3 | 512X512 | seresnet50 | Softmax + CrossEntropyLoss | ? | 1 epochs + all samples + ReduceLROnPlateau + each tile augmentation + 8folds |
Dataset | image size | Model | loss | LB | Info |
---|---|---|---|---|---|
d3 | 512X512 | seresnet50 | MSELoss | 0.71 | 10 epochs + 1000 samples + each tile augmentation |
d3 | 512X512 | seresnet50 | MSELoss | 0.77 | 10 epochs + all samples + each tile augmentation |
d3 | 512X512 | seresnet50 | MSELoss | 0.78 | 20 epochs + all samples + each tile augmentation |
d3 | 512X512 | seresnet50 | MSELoss | 0.77 | 10 epochs + 1000 samples + each tile augmentation + 2 color augs(final) |
d3 | 512X512 | seresnet50 | MSELoss | 0.76 | 10 epochs + 1000 samples + each tile augmentation + 2 color augs(best) |
d3 | 512X512 | seresnet50 | MSELoss | 0.78 | 10 epochs + all samples + each tile augmentation + 2 color augs(best) |
d4 | 512X512 | seresnet50 | MSELoss | ? | |
d5 | 1536X1536 | seresnet50 | MSELoss | ? | |
d3 | 512X512 | EfficientNet-B4 | MSELoss | ? | |
d4 | 512X512 | EfficientNet-B4 | MSELoss | ? | |
d5 | 1536X1536 | EfficientNet-B4 | MSELoss | - | impossible, 1536 only suitable in Efn-B0 |
Dataset | image size | Model | loss | LB | Info |
---|---|---|---|---|---|
d4 | 512X512 | EfficientNet-B4 | MSELoss | 0.76 | local predict cohen is 0.7732, about 5 epochs |
d4 | 512X512 | EfficientNet-B4 | MSELoss | 0.76 | local predict cohen is 0.7865, about 5 epochs, mode0 + model2 |
d4 | 512X512 | EfficientNet-B4 | MSELoss | 0.73 | more epochs 3+ I guess train_test_split is still problematic, change to 8 fold |
d7 | 512X512 | EfficientNet-B4 | MSELoss | 0.74 | fold 0, many epochs |
d7 | 768X768 | EfficientNet-B4 | MSELoss | ? | fold 0, 3 epochs |
d4 | 512X512 | EfficientNet-B4 | MSELoss | ? | 8 fold, 3 epochs |
d6 | 512X512 | seresnetxt-50 | MSELoss | ? | 8 fold, 3 epochs |
d5 | 1536X1536 | EfficientNet-B0 | BCELossWithLogits | 0.69 | local val cohen is 0.74, 2 epochs |
d7 | 1536X1536 | EfficientNet-B0 | BCELossWithLogits | 0.81 | fold 0, trained based on provided checkpoint |
- more data, more epochs(at least 20) works!!
- not much difference between efn-b4 and serenset50
- d2 is better than d1
- regression is better than classification
- data is not covered for the above last experiment
- best model doens't necessary bettert than final. Should use the version having the highest val(1, test_dl) score
Model | Size(MB) |
---|---|
Efficienet-B4 | 2832.72 |
Efficienet-B5 | 3903.49 |
Efficienet-B6 | 5010.21 |
Efficienet-B7 | 6736.80 |
seresnet50 | 2406.75 |
seresnet200b | 7698.62 |
- investigate coef not updated
- test color (brightness, saturation, hue variance) augumentation
- test 8 folds
- test efn-b4 model