/kaggle-pandas

my records for the kaggle competition PANDAS

Primary LanguageJupyter Notebook

Dataset

Models

EfficienetNet-B0
EfficienetNet-B4
serenet50

Loss

CrossEntropyLoss
MSELoss
Softmax + CrossEntropyLoss
BCELossWithLogits

Experiments

Classification

Dataset image size Model loss LB Info
d1 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.59 4 epochs + all data
d1 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.62 10 epochs + all data + ReduceLROnPlateau(cohen)
d1 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.62 10 epochs + all data + ReduceLROnPlateau(loss)
d2 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.64 4 epochs + all data
d2 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.70 20 epochs + all data + ReduceLROnPlateau(loss)
d2 512X512 EfficientNet-B4 Softmax + CrossEntropyLoss 0.71 30 epochs + all data + ReduceLROnPlateau(loss)
d1 512X512 seresnet50 Softmax + CrossEntropyLoss 0.2 1 epoch + all data
d1 512X512 seresnet50 Softmax + CrossEntropyLoss 0.49 10 epochs + 1000 samples
d1 512X512 seresnet50 Softmax + CrossEntropyLoss 0.58 10 epochs + 2000 samples
d1 512X512 seresnet50 Softmax + CrossEntropyLoss 0.61 20 epochs + 2000 samples + ReduceLROnPlateau(cohen)
d1 512X512 seresnet50 Softmax + CrossEntropyLoss 0.65 20 epochs + all samples + ReduceLROnPlateau
d2 512X512 seresnet50 Softmax + CrossEntropyLoss 0.70 20 epochs + all samples + ReduceLROnPlateau
d3 512X512 seresnet50 Softmax + CrossEntropyLoss ? 1 epochs + all samples + ReduceLROnPlateau + each tile augmentation + 8folds

Regression

Dataset image size Model loss LB Info
d3 512X512 seresnet50 MSELoss 0.71 10 epochs + 1000 samples + each tile augmentation
d3 512X512 seresnet50 MSELoss 0.77 10 epochs + all samples + each tile augmentation
d3 512X512 seresnet50 MSELoss 0.78 20 epochs + all samples + each tile augmentation
d3 512X512 seresnet50 MSELoss 0.77 10 epochs + 1000 samples + each tile augmentation + 2 color augs(final)
d3 512X512 seresnet50 MSELoss 0.76 10 epochs + 1000 samples + each tile augmentation + 2 color augs(best)
d3 512X512 seresnet50 MSELoss 0.78 10 epochs + all samples + each tile augmentation + 2 color augs(best)
d4 512X512 seresnet50 MSELoss ?
d5 1536X1536 seresnet50 MSELoss ?
d3 512X512 EfficientNet-B4 MSELoss ?
d4 512X512 EfficientNet-B4 MSELoss ?
d5 1536X1536 EfficientNet-B4 MSELoss - impossible, 1536 only suitable in Efn-B0
Dataset image size Model loss LB Info
d4 512X512 EfficientNet-B4 MSELoss 0.76 local predict cohen is 0.7732, about 5 epochs
d4 512X512 EfficientNet-B4 MSELoss 0.76 local predict cohen is 0.7865, about 5 epochs, mode0 + model2
d4 512X512 EfficientNet-B4 MSELoss 0.73 more epochs 3+ I guess train_test_split is still problematic, change to 8 fold
d7 512X512 EfficientNet-B4 MSELoss 0.74 fold 0, many epochs
d7 768X768 EfficientNet-B4 MSELoss ? fold 0, 3 epochs
d4 512X512 EfficientNet-B4 MSELoss ? 8 fold, 3 epochs
d6 512X512 seresnetxt-50 MSELoss ? 8 fold, 3 epochs
d5 1536X1536 EfficientNet-B0 BCELossWithLogits 0.69 local val cohen is 0.74, 2 epochs
d7 1536X1536 EfficientNet-B0 BCELossWithLogits 0.81 fold 0, trained based on provided checkpoint

Ensemble

Conclusion

  • more data, more epochs(at least 20) works!!
  • not much difference between efn-b4 and serenset50
  • d2 is better than d1
  • regression is better than classification
  • data is not covered for the above last experiment
  • best model doens't necessary bettert than final. Should use the version having the highest val(1, test_dl) score

Model size comparison

Model Size(MB)
Efficienet-B4 2832.72
Efficienet-B5 3903.49
Efficienet-B6 5010.21
Efficienet-B7 6736.80
seresnet50 2406.75
seresnet200b 7698.62

Works to do

2020/5/30/

  1. investigate coef not updated
  2. test color (brightness, saturation, hue variance) augumentation
  3. test 8 folds
  4. test efn-b4 model