/traffic-LLM-survey

some related work about traffic and large language model

traffic-LLM-survey

some related work about traffic and large language model

ref (useful)

  1. Transformer 是 RNN:具有线性注意力的快速自回归 Transformer

内容很好,略。

  1. A survey of transformers

较全的一个survey

  1. On The Computational Complexity of Self-Attention

结论:在强指数时间假设下,在最坏情况下,这里可能存在一种基本的“没有免费午餐”现象:似乎不太可能获得自注意力的可证明的次二次算法,同时对于所有输入也是可证明的近似准确的算法。

  1. Training Vision Transformers with Only 2040 Images

traffic classification

  1. ET-bert

  2. BFCN: A Novel Classification Method of Encrypted Traffic Based on BERT and CNN

数据包level bert + 序列的CNN特征

  1. Yet Another Traffic Classifier: A Masked Autoencoder Based Traffic Transformer with Multi-Level Flow Representation

实际上是flow 转5个数据包的图 (40*40),然后利用图像transformer进行。

123

  1. M3F: A novel multi-session and multi-protocol based malware traffic fingerprinting

一阶马尔可夫

  1. TSFN: A Novel Malicious Traffic Classification Method Using BERT and LSTM

数据包level bert + 序列的LSTM特征 和 BFCN同一个作者,设计细节没写。

  1. I^2 RNN: An Incremental and Interpretable Recurrent Neural Network for Encrypted Traffic Classification

  1. Low-Quality Training Data Only? A Robust Framework for Detecting Encrypted Malicious Network Traffic

  1. FusionTC: Encrypted App Traffic Classification Using Decision-Level Multimodal Fusion Learning of Flow Sequence

  1. FA-Net: More Accurate Encrypted Network Traffic Classification Based on Burst with Self-Attention

一眼看上去有点怪的模型

  1. NetGPT: Generative Pretrained Transformer for Network Traffic

3个数据包的bert (转NLP)

  1. Spatial-Temporal Feature with Dual-Attention Mechanism for Encrypted Malicious Traffic Detection

cnn+gru

  1. Rosetta: Enabling Robust TLS Encrypted Traffic Classification in Diverse Network Environments with TCP-Aware Traffic Augmentation

2页短文?没看懂

  1. Transformer-Based Device-Type Identification in Heterogeneous IoT Traffic

transformer + 一些trick做分类

  1. FastTraffic: A lightweight method for encrypted traffic fast classification

network traffic generation

  1. Network Traffic Generation: A Survey and Methodology

分析了92个流量生成器工具

  1. Generating practical adversarial network traffic flows using NIDSGAN

利用GAN生成对抗性flow,但是生成的是特征,不是flow。缺了一半

  1. 用于物联网流量生成的知识增强 GAN

GAN+LSTM+知识图 生成 flow的时间序列

  1. Flow-based network traffic generation using generative adversarial networks

GAN+flow特征的生成

  1. (SIGCOMM'22) Practical GAN-based synthetic IP header trace generation using NetShare

合成数据包和流标头跟踪, gan +sequence +header

  1. PAC-GAN: Packet Generation of Network Traffic using Generative Adversarial Networks

GAN + packet

  1. DBWE-Corbat:使用动态词嵌入和网络范围对比学习生成后台网络流量

数据包-->ip+port

  1. Design and Implementation of Traffic Generation Model and Spectrum Requirement Calculator for Private 5G Network

GAN学习流量的时间--字节数矩阵

  1. DPNeT:具有生成对抗网络的差分专用网络流量合成

GAN+差分隐私+flow特征

  1. FlowGAN - Synthetic Network Flow Generation using Generative Adversarial Networks

WGAN + 流特征

  1. Generative Adversarial Networks (GANs): A Survey on Network Traffic Generation

一个比较全的survey

  1. SyNIG: Synthetic Network Traffic Generation through Time Series Imaging

使用格拉姆角场(GAF)将时间序列数据转换为图像

  1. Stan: Synthetic network traffic generation with generative neural models

卷积神经层 (CNN) 与混合密度神经层 (MDN) 和 softmax 层集成

Efficient Transformers

  1. Segmented Recurrent Transformer: An Efficient Sequence-to-Sequence Model

  2. Block-State Transformers

  3. 扩散器:具有长序列多跳注意力扩散的高效变压器

  4. FlashAttention

生成指标

  1. 包头分布 + JensenShannon Divergence(netgpt)

  2. 【NLP技术分享】文本生成评价指标的进化与推翻

  3. 基于模型的相似度评价。

模型微调

  1. bert cls token.

other ref (network related)

  1. Datasets are not enough: Challenges in labeling network traffic

other ref (deep learning related)

  1. A review on the attention mechanism of deep learning

my experiments

  1. my experiments