[Bug] Training Error: FileNotFoundError: FasterRCNN: FIRoIHead: [Errno 2] No such file or directory: './work_dirs/roi_feats/cfinet'
peterstratton opened this issue · 3 comments
Prerequisite
- I have searched Issues and Discussions but cannot get the expected help.
- I have read the FAQ documentation but cannot get the expected help.
- The bug has not been fixed in the latest version (master) or latest version (3.x).
Task
I'm using the official example scripts/configs for the officially supported tasks/models/datasets.
Branch
master branch https://github.com/open-mmlab/mmdetection
Environment
Hi Shaun,
I'm extremely interested in your work and to that end, I'm trying to recreate your results on the SODA-D dataset. I'm attempting to run your train script, when I receive this error: FileNotFoundError: FasterRCNN: FIRoIHead: [Errno 2] No such file or directory: './work_dirs/roi_feats/cfinet'
.
Any recommended steps to fix this issue would be appreciated! Thank you!
Reproduces the problem - code sample
None
Reproduces the problem - command or script
python ./tools/train.py ./configs/cfinet/faster_rcnn_r50_fpn_cfinet_1x.py
Reproduces the problem - error message
/opt/conda/lib/python3.7/site-packages/mmcv/__init__.py:21: UserWarning: On January 1, 2023, MMCV will release v2.0.0, in which it will remove components related to the training process and add a data transformation module. In addition, it will rename the package names mmcv to mmcv-lite and mmcv-full to mmcv. See https://github.com/open-mmlab/mmcv/blob/master/docs/en/compatibility.md for more details.
'On January 1, 2023, MMCV will release v2.0.0, in which it will remove '
/opt/CFINet/mmdet/utils/setup_env.py:39: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
f'Setting OMP_NUM_THREADS environment variable for each process '
/opt/CFINet/mmdet/utils/setup_env.py:49: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
f'Setting MKL_NUM_THREADS environment variable for each process '
2023-09-15 16:20:22,356 - mmdet - INFO - Environment info:
------------------------------------------------------------
sys.platform: linux
Python: 3.7.13 (default, Mar 29 2022, 02:18:16) [GCC 7.5.0]
CUDA available: True
GPU 0,1: NVIDIA RTX A6000
CUDA_HOME: /usr/local/cuda
NVCC: Cuda compilation tools, release 11.3, V11.3.109
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 1.12.1
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201402
- Intel(R) oneAPI Math Kernel Library Version 2021.4-Product Build 20210904 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX2
- CUDA Runtime 11.3
- NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_61,code=sm_61;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=compute_37
- CuDNN 8.3.2 (built against CUDA 11.5)
- Magma 2.5.2
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.3.2, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.12.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=OFF, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF,
TorchVision: 0.13.1
OpenCV: 4.8.0
MMCV: 1.7.1
MMCV Compiler: GCC 7.5
MMCV CUDA Compiler: 11.3
MMDetection: 2.26.0+unknown
------------------------------------------------------------
2023-09-15 16:20:22,866 - mmdet - INFO - Distributed training: False
2023-09-15 16:20:23,344 - mmdet - INFO - Config:
model = dict(
type='FasterRCNN',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=True),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
neck=dict(
type='FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=256,
num_outs=4),
rpn_head=dict(
type='CRPNHead',
num_stages=2,
stages=[
dict(
type='StageRefineRPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[2],
ratios=[1.0],
strides=[4, 8, 16, 32]),
refine_reg_factor=200.0,
refine_cfg=dict(type='dilation', dilation=3),
refined_feature=True,
sampling=False,
with_cls=False,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(0.0, 0.0, 0.0, 0.0),
target_stds=(0.1, 0.1, 0.5, 0.5)),
loss_bbox=dict(type='IoULoss', linear=True, loss_weight=9.0)),
dict(
type='StageRefineRPNHead',
in_channels=256,
feat_channels=256,
refine_cfg=dict(type='offset'),
refined_feature=True,
sampling=True,
with_cls=True,
reg_decoded_bbox=True,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=(0.0, 0.0, 0.0, 0.0),
target_stds=(0.05, 0.05, 0.1, 0.1)),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True,
loss_weight=0.9),
loss_bbox=dict(type='IoULoss', linear=True, loss_weight=9.0))
]),
roi_head=dict(
type='FIRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[4, 8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=9,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0)),
num_gpus=1,
temperature=0.6,
contrast_loss_weights=0.5,
num_con_queue=256,
con_sampler_cfg=dict(num=128, pos_fraction=[0.5, 0.25, 0.125]),
con_queue_dir='./work_dirs/roi_feats/cfinet',
ins_quality_assess_cfg=dict(
cls_score=0.05, hq_score=0.65, lq_score=0.25,
hq_pro_counts_thr=8)),
train_cfg=dict(
rpn=[
dict(
assigner=dict(
type='DynamicAssigner',
low_quality_iou_thr=0.2,
base_pos_iou_thr=0.25,
neg_iou_thr=0.15),
allowed_border=-1,
pos_weight=-1,
debug=False),
dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.7,
min_pos_iou=0.3,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False)
],
rpn_proposal=dict(
nms_pre=2000,
max_per_img=300,
nms=dict(type='nms', iou_threshold=0.8),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=300,
nms=dict(type='nms', iou_threshold=0.5),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.5),
max_per_img=100)))
dataset_type = 'SODADDataset'
data_root = '/data/SODA-D/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1200, 1200), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1200, 1200),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=4,
workers_per_gpu=2,
train=dict(
type='SODADDataset',
ann_file='/data/SODA-D/divData/Annotations/train.json',
img_prefix='/data/SODA-D/divData/Images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations', with_bbox=True),
dict(type='Resize', img_scale=(1200, 1200), keep_ratio=True),
dict(type='RandomFlip', flip_ratio=0.5),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
],
ori_ann_file='/data/SODA-D/rawData/Annotations/train.json'),
val=dict(
type='SODADDataset',
ann_file='/data/SODA-D/divData/Annotations/val.json',
img_prefix='/data/SODA-D/divData/Images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1200, 1200),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
],
ori_ann_file='/data/SODA-D/rawData/Annotations/val_wo_ignore.json'),
test=dict(
type='SODADDataset',
ann_file='/data/SODA-D/divData/Annotations/test.json',
img_prefix='/data/SODA-D/divData/Images/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1200, 1200),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='DefaultFormatBundle'),
dict(type='Collect', keys=['img'])
])
],
ori_ann_file='/data/SODA-D/rawData/Annotations/test_wo_ignore.json'))
optimizer = dict(
type='SGD',
lr=0.01,
momentum=0.9,
weight_decay=0.0001,
paramwise_cfg=dict(
custom_keys=dict({
'roi_head.fc_enc': dict(lr_mult=0.05),
'roi_head.fc_proj': dict(lr_mult=0.05)
})))
optimizer_config = dict(grad_clip=None)
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)
checkpoint_config = dict(interval=1)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)
find_unused_parameters = True
rpn_weight = 0.9
fp16 = dict(loss_scale='dynamic')
total_epochs = 12
evaluation = dict(interval=12, metric='bbox')
work_dir = './work_dirs/faster_rcnn_r50_fpn_cfinet_1x'
auto_resume = False
gpu_ids = [0]
2023-09-15 16:20:23,345 - mmdet - INFO - Set random seed to 1912523741, deterministic: False
/opt/CFINet/mmdet/models/losses/iou_loss.py:266: UserWarning: DeprecationWarning: Setting "linear=True" in IOULoss is deprecated, please use "mode=`linear`" instead.
warnings.warn('DeprecationWarning: Setting "linear=True" in '
/opt/CFINet/mmdet/models/dense_heads/anchor_head.py:116: UserWarning: DeprecationWarning: `num_anchors` is deprecated, for consistency or also use `num_base_priors` instead
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, '
/opt/CFINet/mmdet/models/dense_heads/anchor_head.py:123: UserWarning: DeprecationWarning: anchor_generator is deprecated, please use "prior_generator" instead
warnings.warn('DeprecationWarning: anchor_generator is deprecated, '
Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfg
return obj_cls(**args)
File "/opt/CFINet/mmdet/models/roi_heads/feature_imitation_roi_head.py", line 70, in __init__
self._mkdir(con_queue_dir, num_gpus)
File "/opt/CFINet/mmdet/models/roi_heads/feature_imitation_roi_head.py", line 109, in _mkdir
os.mkdir(con_queue_dir)
FileNotFoundError: [Errno 2] No such file or directory: './work_dirs/roi_feats/cfinet'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 69, in build_from_cfg
return obj_cls(**args)
File "/opt/CFINet/mmdet/models/detectors/faster_rcnn.py", line 27, in __init__
init_cfg=init_cfg)
File "/opt/CFINet/mmdet/models/detectors/two_stage.py", line 50, in __init__
self.roi_head = build_head(roi_head)
File "/opt/CFINet/mmdet/models/builder.py", line 40, in build_head
return HEADS.build(cfg)
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 237, in build
return self.build_func(*args, **kwargs, registry=self)
File "/opt/conda/lib/python3.7/site-packages/mmcv/cnn/builder.py", line 27, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 72, in build_from_cfg
raise type(e)(f'{obj_cls.__name__}: {e}')
FileNotFoundError: FIRoIHead: [Errno 2] No such file or directory: './work_dirs/roi_feats/cfinet'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "./tools/train.py", line 247, in <module>
main()
File "./tools/train.py", line 215, in main
test_cfg=cfg.get('test_cfg'))
File "/opt/CFINet/mmdet/models/builder.py", line 59, in build_detector
cfg, default_args=dict(train_cfg=train_cfg, test_cfg=test_cfg))
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 237, in build
return self.build_func(*args, **kwargs, registry=self)
File "/opt/conda/lib/python3.7/site-packages/mmcv/cnn/builder.py", line 27, in build_model_from_cfg
return build_from_cfg(cfg, registry, default_args)
File "/opt/conda/lib/python3.7/site-packages/mmcv/utils/registry.py", line 72, in build_from_cfg
raise type(e)(f'{obj_cls.__name__}: {e}')
FileNotFoundError: FasterRCNN: FIRoIHead: [Errno 2] No such file or directory: './work_dirs/roi_feats/cfinet'
Additional information
No response
The work_dirs
directory is created for me, but all that's in it are log files and a copy of faster_rcnn_r50_fpn_cfinet_1x.py
.
The path ./work_dirs/roi_feats/cfinet
can be any directory of your choice which is used to store the exemplar features. However, one requirement is that its parent directory must already exist.
Ok sweet thanks! I figured out how to train!