সিস্টেম ডিজাইন বাংলা

এটি একটি রিপোজিটরি যেখানে সিস্টেম ডিজাইন এর মৌলিক জিনিসগুলো নিয়ে আলোচনা করা হয়েছে।

আমি সাজেস্ট করবো যখন আমার সব টপিক লেখা হয়ে যাবে তখন আপনারা চাইলে কান্ট্রিবিউটে করবেন

[এই টিউটোরিয়াল এর উদ্দেশ্য আপনাকে মৌলিক জিনিসগুলোর ধারণা দেয়া]

System Design Wallpaper

[আপনার যদি এই কনটেন্ট পড়ে ভালো লাগে, আপনি চাইলে আমাকে কফি স্পনসর করতে পারেন, https://www.buymeacoffee.com/lahin31]

সূচিপত্র

Section 1: System Design

আমরা যখন কোন এপ্লিকেশন ডেভেলপ করতে যাই আমাদের একটি নির্দিষ্ট প্রকারের ডিজাইন মেনে চলতে হয়, তার কারণ হল আমাদের এপ্লিকেশনে কোন এক সময় থেকে যদি প্রচুর মানুষ ব্যবহার করা শুরু করতে থাকে, তখন আমাদের এপ্লিকেশন যাতে প্রচুর লোড ভালোভাবে নিতে পারে কোন প্রকারের কানেকশন নষ্ট বা পারফরমেন্স ডাউন হওয়া ছাড়া সেজন্য। সেই ডিজাইন কে বলা হয় সিস্টেম ডিজাইন।

(এই স্পেসিফিক সিস্টেম ডিজাইন মূলত ব্যাকএন্ড ইঞ্জিনিয়ারিং এর সাথে সম্পৃক্ত।)

Section 2: Database - SQL and NoSQL

এপ্লিকেশন ডেভেলপ করার সময় আমাদের কাজ অনুযায়ী ডেটাবেস নির্বাচন করতে হয়। সাধারণত, আমরা প্রধান দুই ধরনের ডেটাবেস ব্যাবহার করে থাকি - SQL(রিলেশনাল) ডেটাবেস এবং NoSQL(নন-রিলেশনাল) ডেটাবেস। আমরা কেমন বা কোন ধরণের ডাটা ষ্টোর করতে চাই, কিভাবে ষ্টোর করতে চাই, আমাদের কাজের পদ্ধতি ইত্যাদি প্রয়োজন অনুযায়ী ডেটাবেস বাছাই করতে হয়। ডাটার ধরন অনুযায়ী ডেটাবেসগুলো আমাদের ভিন্ন ভিন্ন সুবিধা দিয়ে থাকে।

SQL NoSQL
টেবিলের মধ্যে ডাটা স্টোর করা হয়, যেখানে প্রতিটি সারি একটি এন্টিটি এবং প্রতিটি কলাম একটি ডাটার বৈশিষ্ট্য নিদের্শন করে। টেবিলগুলোর মধ্যে relation থাকে। কোন প্রকার relation ছাড়া ডাটা বিভিন্নভাবে ষ্টোর করে থাকে। যেমনঃ key-value, graph, document ইত্যাদি।
নির্দিষ্ট স্কিমা অনুযায়ী ডাটা স্টোর করা হয়। (ডাটাবেস পরিবর্তনের মাধ্যমে স্কিমা পরবর্তীতে পরিবর্তন করা যায়।) NoSQL ডাটাবেসে ডাইনামিক স্কিমা থাকে, অর্থাৎ স্কিমা পরিবর্তনযোগ্য।

🔗 আরও পড়ুন: ডেটাবেস

Section 3: Client Server Architecture

ক্লায়েন্ট রিকুয়েস্ট করবে সার্ভারকে কিছু স্পেসিকিফ রিসোর্স এর জন্য, সার্ভার সেই রিকুয়েস্ট পাওয়ার পর সে তার যাবতীয় প্রসেস শেষ করে ক্লায়েন্টকে রেসপন্স দিয়ে দিবে, এটি ক্লায়েন্ট সার্ভার আর্কিটেকচার।

Client Server Architecture

আমাদের সব উদাহরণ থাকবে ক্লায়েন্ট সার্ভার আর্কিটেকচারের উপর ভিত্তি করে।

Section 4: Reliability

সিস্টেম যদি কোনো প্রকারের Fault/Error থাকার পরও ভালোভাবে কাজ করতে পারে কিংবা সিস্টেমটি যদি বন্ধ না হয়, তবে সেই সিস্টেমটি Reliable। আমাদের মনে রাখতে হবে এক বা একাধিক Fault এর কারণে সিস্টেম Failure হতে পারে।

Fault এরকম হতে পারে কোনো user সিস্টেমটি কে এমনভাবে ব্যবহার করেছে যাতে কোনো Failure হয়ে গেল, সেটা ইচ্ছাকৃত বা অনিচ্ছাকৃতভাবেও হতে পারে, তখন যদি সিস্টেমটি বন্ধ না হয়ে কোনো প্রকারের Warning message দেখালো তখন সেই সিস্টেমটিকে আমরা Reliable বলতে পারি।

🔗 আরও পড়ুন: রিলাইবিলিটি

Section 5: Performance Metrics

Throughput

একটি নির্দিষ্ট সময়ের ভিত্তিতে কোনো সিস্টেম যতটুকু কাজ সম্পাদন করতে পারে সেটি হচ্ছে Throughput। যেমন, প্রতি ১০ সেকেন্ড এ সিস্টেম যদি ৫০ টি API request সম্পন্ন করতে পারে তাহলে তার Throughput হবে ৫০/১০ = ৫।

Time to First Byte

ক্লায়েন্ট Resource জন্য যখন সার্ভারকে Request করে এবং ক্লায়েন্ট সার্ভার থেকে FIRST BYTE of Response যখন গ্রহণ করে তার মধ্যকার সময়টুকু (Request করা থেকে শুরু করে এবং FIRST BYTE গ্রহণ করার সময় পর্যন্ত) হল Time to First Byte।

🔗 আরও পড়ুন: পারফরম্যান্স ম্যাট্রিক্স

Section 6: Distributed System

একাধিক কম্পিউটার (বা কম্পোনেন্ট) একসাথে কাজ করার ফলে কোন কাজ শেষ হয় এবং End User এর কাছে একটি কম্পিউটার (বা কম্পোনেন্ট) হিসেবে আসে, সেই সিস্টেমটি হল ডিস্ট্রিবিউটেড সিস্টেম। এই মেশিনগুলোতে শেয়ার্ড স্টেট(Shared State) থাকে, কঙ্কারেন্টলি (Concurrently) কাজ করতে পারে, প্রতিটি সিস্টেম একে অপরের সাথে Information শেয়ার করতে পারবে।

বর্তমান সময়ে Distributed System এর উদাহরণ হল YouTube।

YouTube কেন?

  • সার্ভার User থেকে রিকুয়েস্ট পায় Video Upload কিংবা Video Watch করার জন্য।
  • ভিডিও এনকোড।
  • ডাটাবেস সিস্টেম।

এগুলো সবকিছু মিলে Distributed System YouTube তৈরি করে।

Section 7: Domain Name System

Domain Name System কিংবা DNS একটি নির্দিষ্ট Human Readable Domain (যেমন www.google.com) কে একটি নির্দিষ্ট IP-তে রূপান্তর করে।

আপনি যখন ব্রাউজারে URL টাইপ করেন (যেমন www.google.com)। DNS সাধারণত আপনার দেয়া URL এর IP Address বের করবে এবং সেই IP Address এ আপনার রিকুয়েস্ট প্রসেস হবে।

এই রূপান্তর করার পদ্ধতিটা শুরু হয় DNS Resolver দিয়ে,

  • DNS Resolver মূলত Human Readable Domain কে নির্দিষ্ট IP-তে রূপান্তর করে থাকে। এর ৩টি পার্ট আছে,
    • Root Server, এই সার্ভার মূলত .com, .org, .net ইত্যাদির তথ্য রাখে এবং সেগুলোর IP সেই DNS Resolver কে দিয়ে থাকে যেমন .com এর জন্য .com এর IP, .org এর জন্য .org এর IP
    • Top Level Domain Server, এই সার্ভার মূলত প্রতিটি Top Level Domain (www.google.com এর TLD হল .com) এর Authorititve Server এর তথ্য নিজের মধ্যে রাখে।
    • Authorititve Server, এই সার্ভারের মধ্যে সেই Human Readable Domain (যেমন www.google.com) এর IP পাওয়া যায়।

DNS

Section 8: Functional and Non Functional Requirements

Functional Requirements

একটি সিস্টেম কি কি কাজ করে সেটি Functional Requirement উল্লেখ করে থাকে। উদাহরণ বলা যায়, সোশ্যাল মিডিয়া সিস্টেমে,

  • পোস্ট করা যায়
  • পোস্টে লাইক করা যায়
  • পোস্টে কমেন্ট করা যায়
  • পোস্টে ডিলিট করা যায়

প্রতিটা হচ্ছে এক একটি Functional Requirement।

Non Functional Requirements

এটি মূলত একটি সিস্টেমের গুণমান বৈশিষ্ট্যতা (Quality Characteristics), উদাহরণ:

  • Performance
  • Security
  • Cost
  • Scalability
  • Reliability

প্রতিটা হচ্ছে এক একটি Non Functional Requirement।

Section 9: Back Of the Envelope Estimation

এটি একটি টেকনিক যা আমাদেরকে সিস্টেম ডিজাইন এর Constraints (Load Balancer, CDN) গুলো ব্যবহার করবো কি না তার আনুমানিক ধারনা হিসাব করে বলে দিতে পারে।

🔗 *আরও পড়ুন: ব্যাক অফ দা এনভেলপ এস্টিমেশন

Section 10: Stateful and Stateless Architecture

Stateful

এই আর্কিটেকচারে ডেটা Store এবং Maintain Application সার্ভারে হয়ে থাকে। FTTP হল Stateful।

বাস্তব জীবনে Stateful আর্কিটেকচার এর উদাহরণ হল Web Socket। Web Socket মূলত bidirectional, full-duplex protocol। এখানে Server ডেটা store করে রাখে, যাতে Client সবসময় Server থেকে ডেটা পায়।

Stateless

এই আর্কিটেকচারে ডেটা Store এবং Maintain Application সার্ভারে হয় না বরং কোনো Database বা Cache এ স্টোর এবং মেইনটেইন হয়। HTTP হল Stateless।

HTTP সবসময় Stateless Architecture, কারণ কোনো protected resource এর জন্য আপনাকে সবসময় request করার সময় cookie/token সাথে দিতে হয়। server কখনো cookie/token স্টোর করে রাখে না।

🔗 আরও পড়ুন: স্টেটলেস-স্টেটফুল আর্কিটেকচার

Section 11: Proxy

ক্লায়েন্ট যখন সার্ভারকে রিকুয়েস্ট পাঠানোর সময় সরাসরি সার্ভারকে রিকুয়েস্ট না করে অন্য একটি সার্ভাররের মাধ্যমে রিকুয়েস্ট করলে, সেই প্রসেস হচ্ছে প্রক্সি এবং যে সার্ভার দিয়ে রিকুয়েস্ট করবে সেটা হচ্ছে প্রক্সি সার্ভার।

বাস্তব জীবনে প্রক্সির একটি উদাহরণ হচ্ছে NGINX।

🔗 আরও পড়ুন: প্রক্সি

Section 12: REST Api

REST Api জানার পূর্বে আমাদের বুঝতে হবে রেস্ট(REST) মানে কি, REST মানে হল Representational State Transfer যার মানে দাড়ায় এটি একটি আর্কিটেকচারাল স্টাইল যা ব্যবহার করা হয় স্টেট ট্রান্সফার এর জন্য। এখন REST Api হল, এক প্রকারের এপিআই কনভেনশন যা ব্যবহার করা হয় দুটি এন্ড(যেমনঃ ক্লায়েন্ট এবং সার্ভার) এর মধ্যে স্টেট ট্রান্সফার করাকে নিশ্চিত করার জন্য।

স্টেট ট্রান্সফার নিশ্চিত করতে কিছু স্পেসিফিক HTTP Methods ব্যবহার করা হয়, GET, POST, PUT, PATCH & DELETE, প্রতিটি ম্যাথোডের ব্যবহার জানতে REST Api সেকশনে ক্লিক করুন।

🔗 আরও পড়ুন: রেস্ট এপিআই

Section 13: Scalability

স্কেলেবিলিটি সাধারণত সিস্টেমের ক্ষমতাকে বুঝায় যখন সিস্টেমে ট্রাফিকের পরিমাণ বাড়তে থাকে। উদাহরণ বলা যেতে পারে, একটি ওয়েবসাইটের ডাটাবেসে এখন একটি নির্দিষ্ট পরিমাণ রিকুয়েস্ট করা হচ্ছে কিন্তু আজ থেকে ৫ মাস পর রিকুয়েস্ট ২ গুণ হয়ে গেল তার ঠিক আরও ৫ মাস পর রিকুয়েস্ট ৪ গুণ হয়ে গেল, একটা সময় দেখা যেতে পারে ডাটাবেস সার্ভার এত পরিমাণ রিকুয়েস্ট লোড নিতে পারছে না, এই সমস্যার সমাধানের জন্য স্কেল করাকে স্কেলেবিলিটি বলে।

স্কেলেবিলিটি সাধারণত 2 প্রকারের, ভার্টিকাল স্কেলেবিলিটি (Vertical Scalability) এবং হরাইজন্টাল স্কেলেবিলিটি (Horizontal Scalability)।

🔗 আরও পড়ুন: স্কেলেবিলিটি

Section 14: Database Sharding

Horizontal Scaling কে Sharding বলে। Database Sharding হল টেবিল থেকে ডেটা পৃথক করা। উদাহরণ বলা যায়, ডাটাবেসের ডেটা/row যদি বাড়তে থাকে এবং এত পরিমাণ ডেটা/row বেড়ে গেল যার ফলে ডাটাবেস টেবিলে আর স্টোর করা যায় না তখন আমরা ডেটাগুলোকে মূল টেবিল থেকে পৃথক করে অন্যান্য shard টেবিলে distribute করে রাখি সেটাই Database Sharding।

Sharding

🔗 আরও পড়ুন: ডেটাবেস সাৰ্ডিং

Section 15: Database Replication

Database Replication এক প্রকারের Strategy, যেখানে একটি Master Database এবং একটি কিংবা একাধিক Slave Database থাকবে। Master Database এর মধ্যে Insert, Delete এবং Update এর কাজ হবে এবং Slave Database মধ্যে Master Database এর ডেটাগুলোর Copy থাকবে এবং তার মধ্যে শুধু Read Operation হবে।

Database Replication

Database Replication, SQL এবং NoSQL দুটি ডেটাবেসে করা যায়।

🔗 আরও পড়ুন: ডেটাবেস রেপ্লিকেশন

Section 16: Caching

Caching একটি কৌশল যা দ্বারা কোন Expensive Response'কে কোনো মেমোরিতে রাখা হয়, যাতে বার বার আসা সেই রেস্পন্সের রিকোয়েস্ট কে দ্রুত রেসপন্সটি দিতে পারি। মূল সার্ভারে (যেমন ডাটাবেস) হিট করার পরিবর্তে ক্যাশিং সার্ভারে রিকোয়েস্ট করবে। এতে করে যে সুবিধাটুকু হবে,

  • Read API রিকোয়েস্ট Fast হবে
  • Latency Reduce হবে
  • Fault Tolarence এর ঝুঁকি কমবে

Caching

🔗 আরও পড়ুন: ক্যাশিং

Section 17: Content Delivery Network

Content Delivery Network অথবা CDN, এটি একটি সিস্টেম যেখানে একাধিক সার্ভার আমাদের ভৌগোলিক এর আসেপাশে থাকে, যাতে আমরা খুব দ্রুত কন্টেন্ট পেতে পারি। কন্টেন্টটি হতে পারে JS, CSS, Images কিংবা Videos।

cdn

আমাদের CDN সার্ভার যদি India তে থাকে আর আমরা Bangladesh থেকে content request করি তাহলে খুব তাড়াতাড়ি content পাব। কারণ তখন Latency কমে যাবে। আর আমরা Bangladesh থেকে England-এ যেখানে মূল সার্ভার আছে, সেখানে কনটেন্ট এর জন্য request করলে Latency স্বাভাবিকভাবে বৃদ্ধি পাবে, যেহেতু দুই দেশের দূরত্ব বেশি।

যে যে লোকেশনে CDN সার্ভার আছে সেই লোকেশনগুলোকে Point of Presence বা PoP বলে। যে সার্ভার PoP এর ভিতরে থাকে তাকে Edge Server বলে।

🔗 আরও পড়ুন: কনটেন্ট ডেলিভারি নেটওয়ার্ক

Section 18: CAP Theorem

এটি একটি কনসেপ্ট যা দ্বারা বুজা যায় একটি Distributed Database System এ উল্লিখিত তিনটি প্রোপার্টি থেকে দুইটি প্রোপার্টি মেনে চলবে।

  • C মানে Consistency
  • A মানে Availability
  • P মানে Partition Tolerance

Consistency হচ্ছে একটি ট্রান্সেকশন (Transection) শেষ হওয়ার পর সব নোডে সবসময় consistent বা একই value থাকবে।

Availability মানে হচ্ছে প্রতিটি read এবং write রিকোয়েস্ট হয় প্রসেস(process) হবে না হয় কোনো message পাবে যে অপারেশন(request) প্রসেস(process) হচ্ছে না।

Partition Tolerance হচ্ছে একাধিক নোড একে অপরের সাথে কানেকশন(connection) নষ্ট হলেও, read এবং write অপারেশন ঠিকভাবে প্রসেস হবে।

🔗 আরও পড়ুন: ক্যাপ থিওরাম

Section 28: Resources