HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)
Guanying Chen,
Chaofeng Chen,
Shi Guo,
Zhetong Liang,
Kwan-Yee K. Wong,
Lei Zhang
We provide testing and training codes. Details of the training and testing dataset can be found in DeepHDRVideo-Dataset. Datasets, the trained models, and the computed results can be download in One Drive.
This method is implemented in PyTorch and tested with Ubuntu (14.04 and 16.04) and Centos 7.
- Python 3.7
- PyTorch 1.10 and torchvision 0.30
You are highly recommended to use Anaconda and create a new environment to run this code. The following is an example procedure to install the dependencies.
# Create a new python3.7 environment named hdr
conda create -n hdr python=3.7
# Activate the created environment
source activate hdr
pip install -r requirements.txt
# Build deformable convolutional layer, tested with PyTorch 1.1, g++5.5, and Cuda 9.0
cd extensions/dcn/
python setup.py develop
# Please refer to https://github.com/xinntao/EDVR if you have difficulty in building this module
Please first go through DeepHDRVideo-Dataset to familiarize yourself with the testing dataset.
The trained models can be found in One Drive (Models/
). Download and place it to data/models/
.
The synthetic test dataset can be found in One Drive (/Synthetic_Dataset/HDR_Synthetic_Test_Dataset.tgz
). Download and unzip it to data/
. Note that we donot perform global motion alignment for this synthetic dataset.
# Test our method on two-exposure data. Results can be found in data/models/CoarseToFine_2Exp/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
--benchmark syn_test_dataset --bm_dir data/HDR_Synthetic_Test_Dataset \
--mnet_name weight_net --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth
# Test our method on three-exposure data. The results can be found in data/models/CoarseToFine_3Exp/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
--benchmark syn_test_dataset --bm_dir data/HDR_Synthetic_Test_Dataset \
--mnet_name weight_net --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth
Please download this dataset from TOG13_Dynamic_Dataset.tgz
and unzip to data/
. Normally when testing on a video, we have to first compute the similarity transformation matrices between neighboring frames using the following commands.
# However, this is optional as the downloaded dataset already contains the required transformation matrices for each scene in Affine_Trans_Matrices/.
python utils/compute_nbr_trans_for_video.py --in_dir data/TOG13_Dynamic_Dataset/ --crf data/TOG13_Dynamic_Dataset/BaslerCRF.mat --scene_list 2Exp_scenes.txt
python utils/compute_nbr_trans_for_video.py --in_dir data/TOG13_Dynamic_Dataset/ --crf data/TOG13_Dynamic_Dataset/BaslerCRF.mat --scene_list 3Exp_scenes.txt
# Test our method on two-exposure data. The results can be found in data/models/CoarseToFine_2Exp/
# Specify the testing scene with --test_scene. Available options are Ninja-2Exp-3Stop WavingHands-2Exp-3Stop Skateboarder2-3Exp-2Stop ThrowingTowel-2Exp-3Stop
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
--benchmark tog13_online_align_dataset --bm_dir data/TOG13_Dynamic_Dataset --test_scene ThrowingTowel-2Exp-3Stop --align \ --mnet_name weight_net --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth
# To test on a specific scene, you can use the --test_scene argument, e.g., "--test_scene ThrowingTowel-2Exp-3Stop".
# Test our method on three-exposure data. The results can be found in data/models/CoarseToFine_3Exp/
# Specify the testing scene with --test_scene. Available options are Cleaning-3Exp-2Stop Dog-3Exp-2Stop CheckingEmail-3Exp-2Stop Fire-2Exp-3Stop
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
--benchmark tog13_online_align_dataset --bm_dir data/TOG13_Dynamic_Dataset --test_scene Dog-3Exp-2Stop --align \
--mnet_name weight_net --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth
The global motion augmented static dataset can be found in One Drive (/Real_Dataset/Static/
).
# Test our method on two-exposure data. Download static_RGB_data_2exp_rand_motion_release.tgz and unzip to data/
# Results can be found in data/models/CoarseToFine_2Exp/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
--benchmark real_benchmark_dataset --bm_dir data/static_RGB_data_2exp_rand_motion_release --test_scene all \
--mnet_name weight_net --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth
# Test our method on three-exposure data. Download static_RGB_data_3exp_rand_motion_release.tgz and unzip to data/
# The results can be found in data/models/CoarseToFine_3Exp/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
--benchmark real_benchmark_dataset --bm_dir data/static_RGB_data_3exp_rand_motion_release --test_scene all \
--mnet_name weight_net --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth
The dynamic with GT dataset can be found in One Drive (/Real_Dataset/Dynamic/
).
# Test our method on two-exposure data. Download dynamic_RGB_data_2exp_release.tgz and unzip to data/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
--benchmark real_benchmark_dataset --bm_dir data/dynamic_RGB_data_2exp_release --test_scene all \
--mnet_name weight_net --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth
# Test our method on three-exposure data. Download dynamic_RGB_data_3exp_release.tgz and unzip to data/
python run_model.py --gpu_ids 0 --model hdr3E_flow2s_model \
--benchmark real_benchmark_dataset --bm_dir data/dynamic_RGB_data_3exp_release --test_scene all \
--mnet_name weight_net --fnet_checkp data/models/CoarseToFine_3Exp/flow_net.pth --mnet_checkp data/models/CoarseToFine_3Exp/weight_net.pth --mnet2_checkp data/models/CoarseToFine_3Exp/refine_net.pth
The dynamic with GT dataset can be found in One Drive (/Real_Dataset/Dynamic_noGT/
).
# Test our method on two-exposure data. Download dynamic_data_noGT_2exp_RGB_JPG.tgz and unzip to data/
# Note that we provide the JPG dataset only for illustrating the testing process
# Results can be found in data/models/CoarseToFine_2Exp/
python run_model.py --gpu_ids 0 --model hdr2E_flow2s_model \
--benchmark real_benchmark_dataset --bm_dir data/dynamic_data_noGT_2exp_RGB_JPG --test_scene all \
--mnet_name weight_net --mnet_checkp data/models/CoarseToFine_2Exp/weight_net.pth --fnet_checkp data/models/CoarseToFine_2Exp/flow_net.pth --mnet2_checkp data/models/CoarseToFine_2Exp/refine_net.pth
# It is similar to test on three-exposure data
You have two options to test our method on your dataset. In the first option, you have to implement a customized Dataset class to load your data, which should not be difficult. Please refer to datasets/tog13_online_align_dataset.py
.
If you don't want to implement your own Dataset class, you may reuse datasets/tog13_online_align_dataset.py
. However, you have to first arrange your dataset similar to the TOG13 dataset.
Then you can run utils/compute_nbr_trans_for_video.py
to compute the similarity transformation matrices between neighboring frames to enable global alignment.
# Use gamma curve if you do not know the camera response function
python utils/compute_nb_transformation_video.py --in_dir /path/to/your/dataset/ --crf gamma --scene_list your_scene_list
We evaluate PSRN, HDR-VDP, HDR-VQM metrics using the Matlab code. Please first install HDR Toolbox to read HDR. Then set the paths of the ground-truth HDR and the estimated HDR in matlab/config_eval.m
. Last, run main_eval.m
in the Matlab console in the directory of matlab/
.
main_eval(2, 'Ours')
main_eval(3, 'Ours')
All visual results in the experiment are tonemapped using Reinhard et al.’s method. Please first install luminance-hdr-cli. In Ubuntu, you may use sudo apt-get install -y luminance-hdr
to install it. Then you can use the following command to produce the tonemmapped results.
python utils/tonemapper.py -i /path/to/HDR/
The precomputed results can be found in One Drive (/Results
).
The training process is described in docs/training.md.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
If you find this code useful in your research, please consider citing:
@article{chen2021hdr,
title={{HDR} Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset},
author={Chen, Guanying and Chen, Chaofeng and Guo, Shi and Liang, Zhetong and Wong, Kwan-Yee K and Zhang, Lei},
journal=ICCV,
year={2021}
}