Code for the image-caption retrieval methods from "VSE++: Improving
Visual-Semantic Embeddings with Hard Negatives" (Faghri, Fleet, Kiros, Fidler.
2017).
We recommended to use Anaconda for the following packages.
import nltk
nltk.download()
> d punkt
Download the dataset files and pre-trained models. We use splits produced by Andrej Karpathy. The precomputed image features are from here and here. To use full image encoders, download the images from their original sources here, here and here.
wget http://www.cs.toronto.edu/~faghri/vsepp/vocab.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/data.tar
wget http://www.cs.toronto.edu/~faghri/vsepp/runs.tar
We refer to the path of extracted files for data.tar
as $DATA_PATH
and
files for models.tar
as $RUN_PATH
. Extract vocab.tar
to ./vocab
directory.
from vocab import Vocabulary
import evaluation
evaluation.evalrank("$RUN_PATH/coco_vse++/model_best.pth.tar", data_path="$DATA_PATH", split="test")'
To do cross-validation on MSCOCO, pass fold5=True
with a model trained using
--data_name coco
.
Run train.py
:
python train.py --data_path "$DATA_PATH" --data_name coco_precomp --logger_name
runs/coco_vse++ --max_violation
Arguments used to train pre-trained models:
Method | Arguments |
---|---|
VSE0 | --no_imgnorm |
VSE++ | --max_violation |
Order0 | --measure order --use_abs --margin .05 --learning_rate .001 |
Order++ | --measure order --max_violation |
If you found this code useful, please cite the following paper:
@article{faghri2017vse++,
title={VSE++: Improving Visual-Semantic Embeddings with Hard Negatives},
author={Faghri, Fartash and Fleet, David J and Kiros, Jamie Ryan and Fidler, Sanja},
journal={arXiv preprint arXiv:1707.05612},
year={2017}
}