Codebase for NeurIPS2021 "CentripetalText: An Efficient Text Instance Representation for Scene Text Detection" [Paper link]
Python 3.6+
Pytorch 1.1.0
torchvision 0.3
mmcv 0.2.12
editdistance
Polygon3
pyclipper
opencv-python 3.4.2.17
Cython
numpy
json
CentripetalText
└── data
├── total_text
│ ├── Images
│ │ ├── Train
│ │ └── Test
│ └── Groundtruth
│ └── Polygon
│ ├── Train
│ └── Test
├── MSRA-TD500
│ ├── train
│ └── test
├── HUST-TR400
└── SynthText
├── 1
├── ...
├── 200
└── gt.mat
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py ${CONFIG_FILE}
For example:
CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py config/ct/ct_r18_tt.py
Pre-trained checkpoints can be downloaded from baidu cloud (Password: 31mk). When testing, move the file to checkpoints/.
python test.py ${CONFIG_FILE} ${CHECKPOINT_FILE}
For example:
python test.py config/ct/ct_r18_tt.py checkpoints/ct_r18_tt/checkpoint.pth.tar
cd eval/
./eval_tt.sh
- Release code
- Trained models
- Recognition codes
@inproceedings{sheng2021centripetaltext,
title={CentripetalText: An Efficient Text Instance Representation for Scene Text Detection},
author={Tao Sheng and Jie Chen and Zhouhui Lian},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021}
}