This repository contains an implementation of the Single Shot Multibox Detector (SSD) using LibTorch.
SSD is a popular model for real-time object detection in images.
- LibTorch: Utilizes LibTorch for deep learning operations.
- Easy to Use: Clear and convenient interface for working with the model.
libtorch and opencv are located in C:/Program Files
by default.
float depth_multiple = 0.33F;
float width_multiple = 0.25F;
torch::Device device(torch::kCPU);
if (torch::cuda::is_available()) {
device = torch::Device(torch::kCUDA);
}
torch::manual_seed(1337);
Net model(num_classes, num_anchors, depth_multiple, width_multiple);
model.to(device);
const int EPOCHS = 4000;
const int batch_size = 56;
const int img_size = 640;
const int num_classes = 4;
const int num_anchors = 2;
const float learning_rate = 0.0001F;
std::string dataset_path = "C:/datasets/data/";
const int num_workers = 6;
auto [images, targets] = get_train_data(dataset_path, img_size, device, num_classes);
std::vector<float> losses_train = train_model(model, device, images, targets, EPOCHS, batch_size, learning_rate, num_workers);
cv::Mat image = cv::imread("photo.png", cv::IMREAD_COLOR);
torch::Tensor test_img = normalize_image(image, img_size).to(device).unsqueeze(0);
auto [boxes, scores] = model.forward(test_img); // xywh
Dataset structure and markup similar to YOLO.
data/
labels.txt
images/
train/
1.png
val/
1.png
labels/
train/
1.txt
val/
1.txt
test/
1.png
0: pig
1: sheep
2: horse
3: cow