"OpenCV Encode -> Decode" vs "Pillow Encode -> Decode (ByteIO)" 비교 "For -> Multi-processing -> Ray" Save Speed "Pickle -> Bytes" Save Size "Pickle -> Bytes" Load Speed "Pickle -> Bytes" Datasets

Pickle, Bytes 893MB, 897MB

Dictionary, List, Tuple 0, -16Bytes, -20Bytes

x18,000,000 0, -0.28GB -0.36GB ""

# 129sec - 7,500 images
python make_dataset.py --save_dir ./Example_100/ --the_number_of_image_per_file 100

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_100/ --the_number_of_image_per_file 100 --the_size_of_accumulation 1000

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_100/ --the_number_of_image_per_file 100 --the_size_of_accumulation 10000
# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_100/ --the_number_of_image_per_file 100 --the_size_of_accumulation 1000

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_250/ --the_number_of_image_per_file 250 --the_size_of_accumulation 1000

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_500/ --the_number_of_image_per_file 500 --the_size_of_accumulation 1000

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_750/ --the_number_of_image_per_file 750 --the_size_of_accumulation 1000

# 42sec - 7,500 images
python make_dataset_using_ray.py --save_dir ./Example_1000/ --the_number_of_image_per_file 1000 --the_size_of_accumulation 1000
python ex_decoder_using_ray.py
python make_dataset_using_ray.py --save_dir C:/Classification_DB_PIL/ --the_number_of_image_per_file 250 --the_size_of_accumulation 1000