# You want to train FixMatch using single gpu.
python train.py --use_gpu 0 --number_of_labels 40
python train.py --use_gpu 1 --number_of_labels 250
python train.py --use_gpu 2 --number_of_labels 4000
# You want to train FixMatch using multiple gpus.
python train.py --use_gpu 0,1,2,3 --number_of_labels 40
python train.py --use_gpu 0,1,2,3 --number_of_labels 250
python train.py --use_gpu 0,1,2,3 --number_of_labels 4000
The number of labels |
40 |
250 |
4000 |
Official implementation (with RA) |
86.19 ± 3.37 |
94.93 ± 0.65 |
95.74 ± 0.05 |
My implementation (with RA) |
92.39 |
95.14 |
95.62 |
- Official Tensorflow implementation of "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence" (google-research/fixmatch) [Code]
- Unofficial PyTorch implementation of "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence" [Code]
- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence [Paper]