conda create -n custom-stargan-v2 python=3.6.7
conda activate custom-stargan-v2
conda install -y pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=9.0 -c pytorch
conda install x264=='1!152.20180717' ffmpeg=4.0.2 -c conda-forge
pip install -r requirements.txt
pip install --upgrade wandb
bash download.sh celeba-hq-dataset
bash download.sh afhq-dataset
bash download.sh pretrained-network-celeba-hq
bash download.sh pretrained-network-afhq
bash download.sh wing
python main.py --mode train --num_domains 2 --w_hpf 1 \
--lambda_reg 1 --lambda_sty 1 --lambda_ds 1 --lambda_cyc 1 \
--train_img_dir data/celeba_hq/train \
--val_img_dir data/celeba_hq/val
python main.py --mode train --num_domains 3 --w_hpf 0 \
--lambda_reg 1 --lambda_sty 1 --lambda_ds 2 --lambda_cyc 1 \
--train_img_dir data/afhq/train \
--val_img_dir data/afhq/val
python main.py --mode align \
--inp_dir assets/representative/custom/male \
--out_dir assets/representative/celeba_hq/src/male
python main.py --mode sample --num_domains 2 --resume_iter 100000 --w_hpf 1 \
--checkpoint_dir expr/checkpoints/celeba_hq \
--result_dir expr/results/celeba_hq \
--src_dir assets/representative/celeba_hq/src \
--ref_dir assets/representative/celeba_hq/ref
python main.py --mode sample --num_domains 3 --resume_iter 100000 --w_hpf 0 \
--checkpoint_dir expr/checkpoints/afhq \
--result_dir expr/results/afhq \
--src_dir assets/representative/afhq/src \
--ref_dir assets/representative/afhq/ref
python main.py --mode custom \
-o starganv2_cross_celeba.jpg \
-s assets/representative/celeba_hq/src/male/test_me.jpg \
-r assets/representative/celeba_hq/ref/female/081871.jpg
python main.py --mode custom \
-o starganv2_cross_afhq.jpg \
-s assets/representative/afhq/src/cat/test_cat.jpg \
-r assets/representative/afhq/ref/dog/flickr_dog_001072.jpg
python main.py --mode eval --num_domains 2 --w_hpf 1 \
--resume_iter 100000 \
--train_img_dir data/celeba_hq/train \
--val_img_dir data/celeba_hq/val \
--checkpoint_dir expr/checkpoints/celeba_hq \
--eval_dir expr/eval/celeba_hq
python main.py --mode eval --num_domains 3 --w_hpf 0 \
--resume_iter 100000 \
--train_img_dir data/afhq/train \
--val_img_dir data/afhq/val \
--checkpoint_dir expr/checkpoints/afhq \
--eval_dir expr/eval/afhq
python -m metrics.fid --paths PATH_REAL PATH_FAKE
47e2707e8eb126cec05bb252988b43f16fa5016b