Fabrik is an online collaborative platform to build, visualize and train deep learning models via a simple drag-and-drop interface. It allows researchers to collaboratively develop and debug models using a web GUI that supports importing, editing and exporting networks written in widely popular frameworks like Caffe, Keras, and TensorFlow.
This app is presently under active development and we welcome contributions. Please check out our issues thread to find things to work on, or ping us on Gitter.
-
First set up a virtualenv
sudo apt-get install python-pip python-dev python-virtualenv virtualenv --system-site-packages ~/Fabrik source ~/Fabrik/bin/activate
-
Clone the repository
git clone --recursive https://github.com/Cloud-CV/Fabrik.git
-
If you have Caffe, Keras and Tensorflow already installed on your computer, skip this step
- For Linux users
cd Fabrik/requirements sh caffe_tensorflow_keras_install.sh
- For Mac users
- For Linux users
-
Install dependencies
- For developers:
pip install -r requirements/dev.txt
- Others:
pip install -r requirements/common.txt
- Setup postgres database
psql -c "CREATE DATABASE fabrik" -U postgres psql -c "CREATE USER admin WITH PASSWORD 'fabrik'" -U postgres psql -c "ALTER ROLE admin SET client_encoding TO 'utf8'" -U postgres psql -c "ALTER ROLE admin SET default_transaction_isolation TO 'read committed'" -U postgres psql -c "ALTER ROLE admin SET timezone TO 'UTC'" -U postgres psql -c "ALTER USER admin CREATEDB" -U postgres
- Migrate
python manage.py makemigrations caffe_app python manage.py migrate
- Install node modules
npm install
webpack --progress --watch --colors
KERAS_BACKEND=theano python manage.py runserver
- Use
example/tensorflow/GoogleNet.pbtxt
for tensorflow import - Use
example/caffe/GoogleNet.prototxt
for caffe import - Use
example/keras/vgg16.json
for keras import
This software is licensed under GNU GPLv3. Please see the included License file. All external libraries, if modified, will be mentioned below explicitly.