nifpy is an easy to use python package that can be used to fetch live price, closing price, stock summary, index list and fundamentals such as income statement, cash flow statement and balance sheet of stocks that trade on the National Stock Exchange(NSE).
You can install the package from Pypi
pip3 install nifpy
You can install the dependencies by executing the following code in your terminal
pip3 install -r requirements.txt
You can get the scrip/symbol/ticker of the stock you want by opening the yahoo finance website and searching for the company as shown below.
- get_live_price
- get_summary
- get_data
- get_closing_price
- get_crypto_data
- get_balance_sheet
- get_cash_flow
- get_income_statement
This function returns the live/latest price for the symbol that has been passed as the parameter
from nifpy import *
price = get_live_price(ticker)
print(price)
"""
Parameters
-------------------------------
ticker : Contains the symbol/ticker for which the live price will be returned
"""
#Example
price = get_live_price('ITC.NS')
This function returns the summary of various attributes of the symbol/ticker that has been passed as the parameter
from nifpy import *
summary = get_summary(symbol)
print(summary)
"""
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which the summary of various attributes will be returned
Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the:
- Previous Close
- Open
- Bid
- Ask
- Day's Range
- 52 Week Range
- Volume
- Average Volume
- Market Cap
- Beta
- P/E Ratio
- EPS
- Earnings Date
- Forward Dividend and Yield
- Ex-Dividend Date
- 1 Year Target Estimate
"""
#Example
summary = get_summary('MARUTI.NS')
This function returns the various attributes of a ticker such as the High, Low, Open, Close, Volume and Adjusted Close
from nifpy import *
data = get_data(ticker, start=TODAY-PREV, end=TODAY)
print(data)
# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)
"""
Parameters
-------------------------------
tickers : Contains the symbol/ticker for which various attributes mentioned above will be returned
start : Contains the starting date
Format: 'dd/mm/yyyy' as in '27/01/2020'
Default: Three months from today's date
end : Contains the end date
Format: 'dd/mm/yyyy' as in '27/04/2021'
Default: Today's date
Returns
-------------------------------
A pandas dataframe that contains various attributes of a ticker such as the High, Low, Open, Close, Volume
and Adjusted Close
"""
#Example
data = get_data('WIPRO.NS','27/01/2020','27/04/2021')
This function returns the Closing price of a list of tickers mentioned in the parameter.
from nifpy import *
closing = get_closing_price(tickers, start=TODAY-PREV, end = TODAY)
print(closing)
# TODAY = datetime.date.today()
# PREV = datetime.timedelta(90)
"""
Parameters
-------------------------------
tickers : Contains a list of symbols for which the closing price will be returned
start : Contains the starting date from which closing price is required
Format: 'dd/mm/yyyy' as in '25/02/2021'
Default: Three months from today's date
end : Contains the end date till which closing price is required
Format: 'dd/mm/yyyy' as in '27/02/2021'
Default: Today's date
Other than a custom list some other parameters that can be passed directly to the function are:
- get_sensex()
- get_nifty_next50()
- get_nifty_bank()
- get_nifty_auto()
- get_nifty_financial()
- get_nifty_fmcg()
- get_nifty_it()
- get_nifty_media()
- get_nifty_metal()
- get_nifty_pharma()
- get_nifty_psubank()
- get_nifty_privatebank()
- get_nifty_realty()
- get_nifty()
Returns
-------------------------------
A pandas dataframe that contains the closing price of all symbols passed as the parameter to the function
"""
#Example
stonks = ['TCS.NS', 'TITAN.NS', 'TATASTEEL.NS','ICICIBANK.NS']
closing = get_closing_price(stonks,'27/01/2021','26/02/2021')
# Or you can directly pass indexes mentioned above
closing = get_closing_price(get_nifty_bank(),'27/01/2021','26/02/2021')
This function returns the various attributes of a crypto ticker such as the High, Low, Open, Close, Volume and Adjusted Close. This is limited to the previous 100 days historical data for the coin
from nifpy import *
crypto_data = get_crypto_data(symbol)
print(crypto_data)
"""
Parameters
-------------------------------
symbol : Contains the symbol/ticker for which various attributes will be returned
Returns
-------------------------------
A pandas dataframe that contains attributes of a crypto coin such as the High,Low, Open, Close, Volume and Adjusted Close
"""
#Example
crypto_coin = get_crypto_data('DOGE-USD')
Used to obtain the balance sheet of the specified ticker
from nifpy import *
balance_sheet = get_balance_sheet(symbol)
print(balance_sheet)
"""
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the balance sheet has to be fetched
Returns
--------------------------------
A dataframe that contains the balance sheet of the company
"""
#Example
balance_sheet = get_balance_sheet('RELIANCE.NS')
Used to obtain the cash flow statement of the specified ticker
from nifpy import *
cash_flow = get_cash_flow(symbol)
print(cash_flow)
"""
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the cash flow has to be fetched
Returns
--------------------------------
A dataframe that contains the cash flow statement of the company
"""
#Example
cash_flow = get_cash_flow('HCLTECH.NS')
Used to obtain the income statement of the specified ticker
from nifpy import *
inc_statement = get_income_statement(symbol)
print(inc_statement)
"""
Parameters
-------------------------------
symbol : It is used to specify the symbol/ticker for which the income statement has to be fetched
Returns
--------------------------------
A dataframe that contains the income statement of the company
"""
#Example
inc_statement = get_income_statement('TITAN.NS')
- get_nifty()
- get_sensex()
- get_nifty_next50()
- get_nifty_bank()
- get_nifty_auto()
- get_nifty_financial()
- get_nifty_fmcg()
- get_nifty_it()
- get_nifty_media()
- get_nifty_metal()
- get_nifty_pharma()
- get_nifty_psubank()
- get_nifty_privatebank()
- get_nifty_realty()
from nifpy import *
it_stonks = get_nifty_it()
print(it_stonks)
In a similar way stocks trading in other indices are returned as a list and can be used for further analysis.
Used to plot the moving average of the specified ticker
from nifpy import *
moving_avg(scrip, num_days)
"""
Parameters
-------------------------------
scrip : It is used to specify the symbol/ticker for which the moving average has to be plotted
num_days : Number of days for which moving average has to be plotted. Commonly used values
are 14, 20, 50, 100, 200
Returns
--------------------------------
Plot consisting of moving average along with the closing price
"""
#Example
#Moving average for 20 days
moving_avg('ITC.NS', 20)
#Moving average for 50 days
moving_avg('ITC.NS', 50)
Used to plot Bollinger Bands of the specified ticker
from nifpy import *
bollinger_bands(scrip)
"""
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which Bollinger Bands has to be plotted
Returns
--------------------------------
Plot consisting of Bollinger Bands for the past 600 days
"""
#Example
bollinger_bands('DIVISLAB.NS')
Used to get the historical chart of the specified ticker
from nifpy import *
get_chart(scrip, kind = 'line',start = TODAY-PREV, end = TODAY)
# TODAY = datetime.date.today()
# PREV = datetime.timedelta(600)
"""
Parameters
-------------------------------
scrip : Used to specify the symbol/ticker for which historical chart has to be plotted
kind : The type of chart - 'line' or 'area'
start : Contains the starting date
Format: 'dd/mm/yyyy' as in '25/04/2020'
Default: 600 days from today's date
end : Contains the end date
Format: 'dd/mm/yyyy' as in '27/05/2021'
Default: Today's date
Returns
--------------------------------
Historical chart based on time frame
"""
#Example
#For area chart with default timeframe of 600 days
get_chart('SBIN.NS','area')
#For line chart with custom timeframe
get_chart('SBIN.NS','line','25/04/2020','27/05/2021')