=======
c语言注释风格
/**
* @brief 对两个数做加法
*
* @param y是int类型
* @param x为int类型
*
* @return 无
*
*/
void add(int x,int y);
c++语言注释风格
/// \brief 对一个二维的vector<vector<double>>的
/// list进行按照每一个vector<double>的第2个元素进行升序
/// \param list是vector<vector<double>>类型
/// \param temp为int类型
/// \return 无
void add(int x,int y);
- 中文文档生成
>>> cd ./doxygen-chinese
>>> doxygen Doxyfile
>>> cd ./out/latex
>>> vi refman.tex
将
\begin{document}
替换为
\usepackage{CJKutf8}
\begin{document}
\begin{CJK}{UTF8}{gbsn}
将\end{document}
替换为
\end{CJK}
\end{document}
>>> make
- 英文文档生成
>>> cd ./doxygen-english
>>> doxygen Doxyfile
>>> cd ./out/latex
>>> make
def add(x1,x2,x3):
'''
this is a add function!
:param x1:
:param x2:
:param x3:
:return:
'''
pass
"""
`Model` groups layers into an object with training and inference features.
There are two ways to instantiate a `Model`:
Arguments:
optimizer: String (name of optimizer) or optimizer instance.
See [optimizers](/optimizers).
loss: String (name of objective function) or objective function.
See [losses](/losses).
If the model has multiple outputs, you can use a different loss
on each output by passing a dictionary or a list of losses.
The loss value that will be minimized by the model
will then be the sum of all individual losses.
Returns:
A tuple of 3 lists: input arrays, target arrays, sample-weight arrays.
If the model's input and targets are symbolic, these lists are empty
(since the model takes no user-provided data, instead the data comes
from the symbolic inputs/targets).
Raises:
ValueError: In case of invalid arguments for
`optimizer`, `loss`, `metrics` or `sample_weight_mode`.
Examples:
>>> import tensorflow as tf
>>> inputs = tf.keras.Input(shape=(3,))
>>> x = tf.keras.layers.Dense(4, activation=tf.nn.relu)(inputs)
>>> outputs = tf.keras.layers.Dense(5, activation=tf.nn.softmax)(x)
>>> model = tf.keras.Model(inputs=inputs, outputs=outputs)
Examples:
>>> import tensorflow as tf
>>> class MyModel(tf.keras.Model):
>>> def __init__(self):
>>> self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
>>> self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)
>>> def call(self, inputs):
>>> x = self.dense1(inputs)
>>> return self.dense2(x)
>>>
>>> model = MyModel()
"""
>>> cd ./sphinx/source
>>> sphinx-apidoc -o ./source ../srcs/
>>> make html
>>> rm ./sphinx/source/build/doctrees/*.doctree ##只保留index.doctree
>>> rm ./sphinx/source/build/html
>>> rm srcs/.doctrees/*.doctree ##只保留index.doctree
重新编译
>>> sphinx-apidoc -o ./source ../srcs/
>>> make html
生成pdf
>>> make latex
修改文件
>>> cd ./sphinx/source/build/latex/*.tex
>>> make
travis_ci注册和github帐号关联
- python: unittest,nosetest
- c++: googletest