/NER-Pytorch-Chinese

Implemention of NER model on chinese dataset.

Primary LanguagePythonMIT LicenseMIT

NER系列-中文实体识别模型实践

Introduction

本项目主要基于Pytorch, 验证常见的NER范式模型在不同中文NER数据集上(Flat、Nested、Discontinuous)的表现 NER系列模型实践,包括如下:

  1. Bert-Softmax、Bert-Crf、Bert-BiLSTM-Softmax、Bert-BiLSTM-Crf
  2. Word-Feature Model(词汇增强模型):FlatNER、LEBERT
  3. PointerNET (To do)
  4. MRC(Machine Reading Comprehension, MRC)
  5. span-based NER (To do)

Dataset Introduction

mainly tested on ner dataset as below:
中文NER数据集:

  • Flat NER Datasets: Ontonote4、Msra
  • Nested NER Datasets:ACE 2004、 ACE 2005
  • Discontinuous NER Datasets: CADEC

关于一般NER数据处理成以下格式:

{
  "text": ["吴", "重", "阳", ",", "中", "国", "国", "籍",","],
  "label": ["B-NAME", "I-NAME", "I-NAME", "O", "B-CONT", "I-CONT", "I-CONT", "I-CONT", "O"]
}

阅读理解-NER(MRC-NER)处理成以下格式:

{
  "context": "图 为 马 拉 维 首 都 利 隆 圭 政 府 办 公 大 楼 。 ( 本 报 记 者 温 宪 摄 )",
  "end_position": [4,15],
  "entity_label": "NS",
  "impossible": false,
  "qas_id": "3820.1",
  "query": "按照地理位置划分的国家,城市,乡镇,大洲",
  "span_position": ["2;4", "7;15"],
  "start_position": [2, 7]
}

Environment

python==3.8、transformers>=4.12.3、torch==1.8.0 Or run the shell

pip install -r requirements.txt

Project Structure

  • config:some model parameters define
  • datasets:数据管道
  • losses:损失函数
  • metrics:评价指标
  • models:存放自己实现的BERT模型代码
  • output:输出目录,存放模型、训练日志
  • processors:数据处理
  • script:脚本
  • utils: 工具类
  • train.py: 主函数

Usage

Quick Start

you can start training model by run the shell

  1. run ner model except mrc model
bash script/train.sh
  1. run mrc model
bash script/mrc_train.sh

Results

top F1 score of results on test:

model/f1_score Msra Ontonote
BERT-Sotfmax 0.9553 0.8181
BERT-BiLSTM-Sotfmax 0.9566 0.8177
BERT-BiLSTM-LabelSmooth 0.9549 0.8215
BERT-Crf 0.9562 0.8218
BERT-BiLSTM-Crf 0.9561 0.8227
BERT-BiLSTM-Crf-LabelSmooth 0.9547 0.8216
BERT-BiLSTM-Crf-LEBERT 0.9518 0.8094
BERT-BiLSTM-Sotfmax-LEBERT 0.9544 0.8196
MRC 0.942 0.812

Speed

GPU: 3060TI 8G
在速度上,以Msra数据集为例,train数据量41728, 完成训练花费时间大概是如下,总体来说CRF要慢不少。

model time batch_size
BERT-Sotfmax 6min 14s 24
BERT-BiLSTM-Sotfmax 6min 46s 24
BERT+Crf 8min 06s 24
BERT-BiLSTM-Crf 8min 20s 24
MRC 50min 10s 4

Paper & Refer