/litellm

Call all LLM APIs using the OpenAI format. Use Azure, OpenAI, Cohere, Anthropic, Ollama, VLLM, Sagemaker, HuggingFace, Replicate (100+ LLMs)

Primary LanguagePythonMIT LicenseMIT

๐Ÿš… LiteLLM

Call all LLM APIs using the OpenAI format [Anthropic, Huggingface, Cohere, TogetherAI, Azure, OpenAI, etc.]

Schedule Demo ยท Feature Request

Docs 100+ Supported Models Demo Video

LiteLLM manages

  • Translating inputs to the provider's completion and embedding endpoints
  • Guarantees consistent output, text responses will always be available at ['choices'][0]['message']['content']
  • Exception mapping - common exceptions across providers are mapped to the OpenAI exception types.

10/05/2023: LiteLLM is adopting Semantic Versioning for all commits. Learn more
10/16/2023: Self-hosted OpenAI-proxy server Learn more

Usage

Open In Colab
pip install litellm
from litellm import completion
import os

## set ENV variables 
os.environ["OPENAI_API_KEY"] = "your-openai-key" 
os.environ["COHERE_API_KEY"] = "your-cohere-key" 

messages = [{ "content": "Hello, how are you?","role": "user"}]

# openai call
response = completion(model="gpt-3.5-turbo", messages=messages)

# cohere call
response = completion(model="command-nightly", messages=messages)
print(response)

Streaming (Docs)

liteLLM supports streaming the model response back, pass stream=True to get a streaming iterator in response. Streaming is supported for OpenAI, Azure, Anthropic, Huggingface models

response = completion(model="gpt-3.5-turbo", messages=messages, stream=True)
for chunk in response:
    print(chunk['choices'][0]['delta'])

# claude 2
result = completion('claude-2', messages, stream=True)
for chunk in result:
  print(chunk['choices'][0]['delta'])

OpenAI Proxy Server (Docs)

Create an OpenAI API compatible server to call any non-openai model (e.g. Huggingface, TogetherAI, Ollama, etc.)

This works for async + streaming as well.

litellm --model <model_name>

#INFO: litellm proxy running on http://0.0.0.0:8000

Running your model locally or on a custom endpoint ? Set the --api-base parameter see how

Self-host server (Docs)

  1. Clone the repo
git clone https://github.com/BerriAI/litellm.git
  1. Modify template_secrets.toml
[keys]
OPENAI_API_KEY="sk-..."

[general]
default_model = "gpt-3.5-turbo"
  1. Deploy
docker build -t litellm . && docker run -p 8000:8000 litellm

Supported Provider (Docs)

Provider Completion Streaming Async Completion Async Streaming
openai โœ… โœ… โœ… โœ…
cohere โœ… โœ… โœ… โœ…
anthropic โœ… โœ… โœ… โœ…
replicate โœ… โœ… โœ… โœ…
huggingface โœ… โœ… โœ… โœ…
together_ai โœ… โœ… โœ… โœ…
openrouter โœ… โœ… โœ… โœ…
vertex_ai โœ… โœ… โœ… โœ…
palm โœ… โœ… โœ… โœ…
ai21 โœ… โœ… โœ… โœ…
baseten โœ… โœ… โœ… โœ…
azure โœ… โœ… โœ… โœ…
sagemaker โœ… โœ… โœ… โœ…
bedrock โœ… โœ… โœ… โœ…
vllm โœ… โœ… โœ… โœ…
nlp_cloud โœ… โœ… โœ… โœ…
aleph alpha โœ… โœ… โœ… โœ…
petals โœ… โœ… โœ… โœ…
ollama โœ… โœ… โœ… โœ…
deepinfra โœ… โœ… โœ… โœ…

Read the Docs

Logging Observability - Log LLM Input/Output (Docs)

LiteLLM exposes pre defined callbacks to send data to LLMonitor, Langfuse, Helicone, Promptlayer, Traceloop, Slack

from litellm import completion

## set env variables for logging tools
os.environ["PROMPTLAYER_API_KEY"] = "your-promptlayer-key"
os.environ["LLMONITOR_APP_ID"] = "your-llmonitor-app-id"

os.environ["OPENAI_API_KEY"]

# set callbacks
litellm.success_callback = ["promptlayer", "llmonitor"] # log input/output to promptlayer, llmonitor, supabase

#openai call
response = completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hi ๐Ÿ‘‹ - i'm openai"}])

Contributing

To contribute: Clone the repo locally -> Make a change -> Submit a PR with the change.

Here's how to modify the repo locally: Step 1: Clone the repo

git clone https://github.com/BerriAI/litellm.git

Step 2: Navigate into the project, and install dependencies:

cd litellm
poetry install

Step 3: Test your change:

cd litellm/tests # pwd: Documents/litellm/litellm/tests
pytest .

Step 4: Submit a PR with your changes! ๐Ÿš€

  • push your fork to your GitHub repo
  • submit a PR from there

Support / talk with founders

Why did we build this

  • Need for simplicity: Our code started to get extremely complicated managing & translating calls between Azure, OpenAI and Cohere.

Contributors