/Exploratory_Data_Analysis_on_House_Prices_Dataset

This Project is about performing EDA on house prices dataset.

Primary LanguageJupyter Notebook

Overview

This Project is about performing EDA on house prices dataset.

Description

There are 1460 instances of training data and 1460 of test data. Total number of attributes equals 81, of which 36 are numerical, 43 are categorical + Id and SalePrice.

Numerical Features:

1stFlrSF, 2ndFlrSF, 3SsnPorch, BedroomAbvGr, BsmtFinSF1, BsmtFinSF2, BsmtFullBath, BsmtHalfBath, BsmtUnfSF, EnclosedPorch, Fireplaces, FullBath, GarageArea, GarageCars, GarageYrBlt, GrLivArea, HalfBath, KitchenAbvGr, LotArea, LotFrontage, LowQualFinSF, MSSubClass, MasVnrArea, MiscVal, MoSold, OpenPorchSF, OverallCond, OverallQual, PoolArea, ScreenPorch, TotRmsAbvGrd, TotalBsmtSF, WoodDeckSF, YearBuilt, YearRemodAdd, YrSold

Categorical Features:

Alley, BldgType, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinType2, BsmtQual, CentralAir, Condition1, Condition2, Electrical, ExterCond, ExterQual, Exterior1st, Exterior2nd, Fence, FireplaceQu, Foundation, Functional, GarageCond, GarageFinish, GarageQual, GarageType, Heating, HeatingQC, HouseStyle, KitchenQual, LandContour, LandSlope, LotConfig, LotShape, MSZoning, MasVnrType, MiscFeature, Neighborhood, PavedDrive, PoolQC, RoofMatl, RoofStyle, SaleCondition, SaleType, Street, Utilitif