/lime-experiments

Code for all experiments.

Primary LanguagePythonBSD 2-Clause "Simplified" LicenseBSD-2-Clause

This repository contains the code to run the experiments present in this paper. The code here is frozen to what it was when we originally wrote the paper. If you're interested in using LIME, check out this repository, where we have packaged it up, improved the code quality, added visualizations and other improvements.

Running the commands below should be enough to get all of the results. You need specific versions python, sklearn, numpy, scipy. Install requirements in a virtualenv using:

pip install -r requirements.txt

Also, must have contrastlime installed

If we forgot something, please email the first author.

Experiment in section 5.2:

  • DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'

    For NewsGroups: '2ng', 'talkng', '3ng'

    • '2ng' = Athiest/Christian
    • 'talkng' = Politics - Guns vs Misc
    • '3ng' = windows.misc, ibm.hardware, windows.x
  • ALGORITHM -> 'l1logreg', 'tree'

  • EXPLAINER -> 'lime', 'parzen', 'greedy' or 'random'

      python evaluate_explanations.py --dataset DATASET --algorithm ALGORITHM --explainer EXPLAINER 
    

Results (Average Test Recall, out of 1):

#####20NewsGroups, Athiest/Christian subset:

  • Logistic Regression: 0.6464
  • Tree: 0.9650

Multi Polarity: Books

Technique LR Decision Tree
Random 18.27 18.51
Greedy 63.23 37.4
Lime 85.12 95.15

Multi Polarity: DVDs

LR Decision Tree
Random 21.25 .2067
Greedy 62.88 40.46
Lime 90.92 96.74

Experiment in section 5.3:

  • DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'

  • ALGORITHM -> 'logreg', 'random_forest', 'svm', 'tree' or 'embforest', although you would need to set up word2vec for embforest

      python data_trusting.py -d DATASET -a ALGORITHM -k 10 -u .25 -r NUM_ROUNDS
    

Results

All results shown are F1 (in percent form), similar to the LIME paper

Multi Polarity: Books

LR NN RF SVM
Random 56.9 x x x
Greedy 14.7 x x x
Lime 97.0 x x x

Multi Polarity: DVDs

LR NN RF SVM
Random x x x x
Greedy x x x x
Lime x x x x

Experiment in section 5.4:

  • NUM_ROUNDS -> Desired number of rounds

  • DATASET -> 'multi_polarity_books', 'multi_polarity_kitchen', 'multi_polarity_dvd', 'multi_polarity_kitchen'

  • PICK -> 'submodular' or 'random' Run the following with the desired number of rounds:

      mkdir out_comparing
    
      python generate_data_for_compare_classifiers.py -d DATASET -o out_comparing/ -k 10 -r NUM_ROUNDS
    
      python compare_classifiers.py -d DATASET -o out_comparing/ -k 10 -n 10 -p PICK
    

Religion dataset:

Available here

Multi-polarity datasets:

I got them from here