This repository contains the code for A New Meta-Baseline for Few-Shot Learning.
@misc{chen2020new,
title={A New Meta-Baseline for Few-Shot Learning},
author={Yinbo Chen and Xiaolong Wang and Zhuang Liu and Huijuan Xu and Trevor Darrell},
year={2020},
eprint={2003.04390},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
5-way accuracy (%) on miniImageNet
method | 1-shot | 5-shot |
---|---|---|
Baseline++ | 51.87 | 75.68 |
MetaOptNet | 62.64 | 78.63 |
Classifier-Baseline | 58.91 | 77.76 |
Meta-Baseline | 63.17 | 79.26 |
5-way accuracy (%) on tieredImageNet
method | 1-shot | 5-shot |
---|---|---|
Classifier-Baseline | 68.07 | 83.74 |
Meta-Baseline | 68.62 | 83.29 |
5-way accuracy (%) on ImageNet-800
method | 1-shot | 5-shot |
---|---|---|
Classifier-Baseline (ResNet-18) | 83.51 | 94.82 |
Meta-Baseline (ResNet-18) | 86.39 | 94.82 |
Classifier-Baseline (ResNet-50) | 86.07 | 96.14 |
Meta-Baseline (ResNet-50) | 89.70 | 96.14 |
Environment
- Python 3.7.3
- Pytorch 1.2.0
- tensorboardX
Datasets
- miniImageNet (courtesy of Spyros Gidaris)
- tieredImageNet (courtesy of Kwonjoon Lee)
- ImageNet-800
Download the datasets and link the folders into materials/
with names mini-imagenet
, tiered-imagenet
and imagenet
.
Note imagenet
refers to ILSVRC-2012 1K dataset with two directories train
and val
with class folders.
When running python programs, use --gpu
to specify the GPUs for running the code (e.g. --gpu 0,1
).
For Classifier-Baseline, we train with 4 GPUs on miniImageNet and tieredImageNet and with 8 GPUs on ImageNet-800. Meta-Baseline uses half of the GPUs correspondingly.
In following we take miniImageNet as an example. For other datasets, replace mini
with tiered
or im800
.
By default it is 1-shot, modify shot
in config file for other shots. Models are saved in save/
.
python train_classifier.py --config configs/train_classifier_mini.yaml
python train_meta.py --config configs/train_meta_mini.yaml
To test the performance, modify configs/test_few_shot.yaml
by setting load_encoder
to the saving file of Classifier-Baseline, or setting load
to the saving file of Meta-Baseline.
E.g., load: ./save/meta_mini-imagenet-1shot_meta-baseline-resnet12/max-va.pth
Then run
python test_few_shot.py --shot 1
A dataset/model is constructed by its name and args in a config file.
For a dataset, if root_path
is not specified, it is materials/{DATASET_NAME}
by default.
For a model, to load it from a specific saving file, change load_encoder
or load
to the corresponding path.
load_encoder
refers to only loading its .encoder
part.
In configs for train_classifier.py
, fs_dataset
refers to the dataset for evaluating few-shot performance.
In configs for train_meta.py
, both tval_dataset
and val_dataset
are validation datasets, while max-va.pth
refers to the one with best performance in val_dataset
.
To evaluate the single-class AUC, add --sauc
when running test_few_shot.py
.