This repository contains training, generation and utility scripts for Stable Diffusion.
Change History is moved to the bottom of the page. 更新履歴はページ末尾に移しました。
For easier use (GUI and PowerShell scripts etc...), please visit the repository maintained by bmaltais. Thanks to @bmaltais!
This repository contains the scripts for:
- DreamBooth training, including U-Net and Text Encoder
- Fine-tuning (native training), including U-Net and Text Encoder
- LoRA training
- Texutl Inversion training
- Image generation
- Model conversion (supports 1.x and 2.x, Stable Diffision ckpt/safetensors and Diffusers)
Stable Diffusion web UI now seems to support LoRA trained by sd-scripts
. (SD 1.x based only) Thank you for great work!!!
These files do not contain requirements for PyTorch. Because the versions of them depend on your environment. Please install PyTorch at first (see installation guide below.)
The scripts are tested with PyTorch 1.12.1 and 1.13.0, Diffusers 0.10.2.
Most of the documents are written in Japanese.
- Training guide - common : data preparation, options etc...
- Dataset config
- DreamBooth training guide
- Step by Step fine-tuning guide:
- training LoRA
- training Textual Inversion
- note.com Image generation
- note.com Model conversion
Python 3.10.6 and Git:
- Python 3.10.6: https://www.python.org/ftp/python/3.10.6/python-3.10.6-amd64.exe
- git: https://git-scm.com/download/win
Give unrestricted script access to powershell so venv can work:
- Open an administrator powershell window
- Type
Set-ExecutionPolicy Unrestricted
and answer A - Close admin powershell window
Open a regular Powershell terminal and type the following inside:
git clone https://github.com/kohya-ss/sd-scripts.git
cd sd-scripts
python -m venv venv
.\venv\Scripts\activate
pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116
pip install --upgrade -r requirements.txt
pip install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl
cp .\bitsandbytes_windows\*.dll .\venv\Lib\site-packages\bitsandbytes\
cp .\bitsandbytes_windows\cextension.py .\venv\Lib\site-packages\bitsandbytes\cextension.py
cp .\bitsandbytes_windows\main.py .\venv\Lib\site-packages\bitsandbytes\cuda_setup\main.py
accelerate config
update: python -m venv venv
is seemed to be safer than python -m venv --system-site-packages venv
(some user have packages in global python).
Answers to accelerate config:
- This machine
- No distributed training
- NO
- NO
- NO
- all
- fp16
note: Some user reports ValueError: fp16 mixed precision requires a GPU
is occurred in training. In this case, answer 0
for the 6th question:
What GPU(s) (by id) should be used for training on this machine as a comma-separated list? [all]:
(Single GPU with id 0
will be used.)
Other versions of PyTorch and xformers seem to have problems with training. If there is no other reason, please install the specified version.
For Lion8bit, you need to upgrade bitsandbytes
to 0.38.0 or later. Uninstall bitsandbytes
, and for Windows, install the Windows version whl file from here or other sources, like:
pip install https://github.com/jllllll/bitsandbytes-windows-webui/raw/main/bitsandbytes-0.38.1-py3-none-any.whl
For upgrading, upgrade this repo with pip install .
, and upgrade necessary packages manually.
When a new release comes out you can upgrade your repo with the following command:
cd sd-scripts
git pull
.\venv\Scripts\activate
pip install --use-pep517 --upgrade -r requirements.txt
Once the commands have completed successfully you should be ready to use the new version.
The implementation for LoRA is based on cloneofsimo's repo. Thank you for great work!
The LoRA expansion to Conv2d 3x3 was initially released by cloneofsimo and its effectiveness was demonstrated at LoCon by KohakuBlueleaf. Thank you so much KohakuBlueleaf!
The majority of scripts is licensed under ASL 2.0 (including codes from Diffusers, cloneofsimo's and LoCon), however portions of the project are available under separate license terms:
Memory Efficient Attention Pytorch: MIT
bitsandbytes: MIT
BLIP: BSD-3-Clause
-
When saving v2 models in Diffusers format in training scripts and conversion scripts, it was found that the U-Net configuration is different from those of Hugging Face's stabilityai models (this repository is
"use_linear_projection": false
, stabilityai istrue
). Please note that the weight shapes are different, so please be careful when using the weight files directly. We apologize for the inconvenience.- Since the U-Net model is created based on the configuration, it should not cause any problems in training or inference.
- Added
--unet_use_linear_projection
option toconvert_diffusers20_original_sd.py
script. If you specify this option, you can save a Diffusers format model with the same configuration as stabilityai's model from an SD format model (a single*.safetensors
or*.ckpt
file). Unfortunately, it is not possible to convert a Diffusers format model to the same format.
-
Lion8bit optimizer is supported. PR #447 Thanks to sdbds!
- Currently it is optional because you need to update
bitsandbytes
version. See "Optional: Use Lion8bit" in installation instructions to use it.
- Currently it is optional because you need to update
-
Multi-GPU training with DDP is supported in each training script. PR #448 Thanks to Isotr0py!
-
Multi resolution noise (pyramid noise) is supported in each training script. PR #471 Thanks to pamparamm!
- See PR and this page Multi-Resolution Noise for Diffusion Model Training for details.
-
学習スクリプトや変換スクリプトでDiffusers形式でv2モデルを保存するとき、U-Netの設定がHugging Faceのstabilityaiのモデルと異なることがわかりました(当リポジトリでは
"use_linear_projection": false
、stabilityaiはtrue
)。重みの形状が異なるため、直接重みファイルを利用する場合にはご注意ください。ご不便をお掛けし申し訳ありません。- U-Netのモデルは設定に基づいて作成されるため、通常、学習や推論で問題になることはないと思われます。
convert_diffusers20_original_sd.py
スクリプトに--unet_use_linear_projection
オプションを追加しました。これを指定するとSD形式のモデル(単一の*.safetensors
または*.ckpt
ファイル)から、stabilityaiのモデルと同じ形状の重みファイルを持つDiffusers形式モデルが保存できます。なお、Diffusers形式のモデルを同形式に変換することはできません。
-
Lion8bitオプティマイザがサポートされました。PR #447 sdbds氏に感謝します。
bitsandbytes
のバージョンを更新する必要があるため、現在はオプションです。使用するにはインストール手順の「オプション:Lion8bitを使う」を参照してください。
-
各学習スクリプトでDDPによるマルチGPU学習がサポートされました。PR #448 Isotr0py氏に感謝します。
-
Multi resolution noise (pyramid noise) が各学習スクリプトでサポートされました。PR #471 pamparamm氏に感謝します。
- 詳細はPRおよびこちらのページ Multi-Resolution Noise for Diffusion Model Training を参照してください。
--multires_noise_iterations
に数値を指定すると有効になります。6
~10
程度の値が良いようです。--multires_noise_discount
に0.1
~0.3
程度の値(LoRA学習等比較的データセットが小さい場合のPR作者の推奨)、ないしは0.8
程度の値(元記事の推奨)を指定してください(デフォルトは0.3
)。
Please read Releases for recent updates. 最近の更新情報は Release をご覧ください。
The LoRA supported by train_network.py
has been named to avoid confusion. The documentation has been updated. The following are the names of LoRA types in this repository.
-
LoRA-LierLa : (LoRA for Li n e a r La yers)
LoRA for Linear layers and Conv2d layers with 1x1 kernel
-
LoRA-C3Lier : (LoRA for C olutional layers with 3 x3 Kernel and Li n e a r layers)
In addition to 1., LoRA for Conv2d layers with 3x3 kernel
LoRA-LierLa is the default LoRA type for train_network.py
(without conv_dim
network arg). LoRA-LierLa can be used with our extension for AUTOMATIC1111's Web UI, or with the built-in LoRA feature of the Web UI.
To use LoRA-C3Lier with Web UI, please use our extension.
train_network.py
がサポートするLoRAについて、混乱を避けるため名前を付けました。ドキュメントは更新済みです。以下は当リポジトリ内の独自の名称です。
-
LoRA-LierLa : (LoRA for Li n e a r La yers、リエラと読みます)
Linear 層およびカーネルサイズ 1x1 の Conv2d 層に適用されるLoRA
-
LoRA-C3Lier : (LoRA for C olutional layers with 3 x3 Kernel and Li n e a r layers、セリアと読みます)
1.に加え、カーネルサイズ 3x3 の Conv2d 層に適用されるLoRA
LoRA-LierLa はWeb UI向け拡張、またはAUTOMATIC1111氏のWeb UIのLoRA機能で使用することができます。
LoRA-C3Lierを使いWeb UIで生成するには拡張を使用してください。
A prompt file might look like this, for example
# prompt 1
masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy,bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28
# prompt 2
masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy,bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40
Lines beginning with #
are comments. You can specify options for the generated image with options like --n
after the prompt. The following can be used.
--n
Negative prompt up to the next option.--w
Specifies the width of the generated image.--h
Specifies the height of the generated image.--d
Specifies the seed of the generated image.--l
Specifies the CFG scale of the generated image.--s
Specifies the number of steps in the generation.
The prompt weighting such as ( )
and [ ]
are working.
プロンプトファイルは例えば以下のようになります。
# prompt 1
masterpiece, best quality, (1girl), in white shirts, upper body, looking at viewer, simple background --n low quality, worst quality, bad anatomy,bad composition, poor, low effort --w 768 --h 768 --d 1 --l 7.5 --s 28
# prompt 2
masterpiece, best quality, 1boy, in business suit, standing at street, looking back --n (low quality, worst quality), bad anatomy,bad composition, poor, low effort --w 576 --h 832 --d 2 --l 5.5 --s 40
#
で始まる行はコメントになります。--n
のように「ハイフン二個+英小文字」の形でオプションを指定できます。以下が使用可能できます。
--n
Negative prompt up to the next option.--w
Specifies the width of the generated image.--h
Specifies the height of the generated image.--d
Specifies the seed of the generated image.--l
Specifies the CFG scale of the generated image.--s
Specifies the number of steps in the generation.
( )
や [ ]
などの重みづけも動作します。