/MASS

MASS: Masked Sequence to Sequence Pre-training for Language Generation

Primary LanguagePythonOtherNOASSERTION

MASS

PWC PWC PWC PWC PWC PWC PWC

MASS is a novel pre-training method for sequence to sequence based language generation tasks. It randomly masks a sentence fragment in the encoder, and then predicts it in the decoder.

img

MASS can be applied on cross-lingual tasks such as neural machine translation (NMT), and monolingual tasks such text summarization. The current codebase supports unsupervised and supervised NMT, text summarization and conversational response generation. We will release our implementation for other sequence to sequence generation tasks in the future.

MASS contains the following codes:

!!!In order to satisfy more users and developers in sequence to sequence tasks, we also implement MASS on fairseq, which will foucs more on the pre-training and fine-tuning in large scale supervised tasks, including neural machine translation, text summarization, grammatical error correction, etc. We will soon release the codes.

Dependencies

Currently we implement MASS based on the codebase of XLM. The depencies are as follows:

  • Python 3
  • NumPy
  • PyTorch (version 0.4 and 1.0)
  • fastBPE (for BPE codes)
  • Moses (for tokenization)
  • Apex (for fp16 training)

Unsupervised NMT

Unsupervised Neural Machine Translation just uses monolingual data to train the models. During MASS pre-training, the source and target languages are pre-trained in one model, with the corresponding langauge embeddings to differentiate the langauges. During MASS fine-tuning, back-translation is used to train the unsupervised models. We provide pre-trained and fine-tuned models:

Languages Pre-trained Model Fine-tuned Model BPE codes Vocabulary
EN - FR MODEL MODEL BPE codes Vocabulary
EN - DE MODEL MODEL BPE codes Vocabulary
En - RO MODEL MODEL BPE_codes Vocabulary

We are also preparing larger models on more language pairs, and will release them in the future.

Data Ready

We use the same BPE codes and vocabulary with XLM. Here we take English-French as an example.

cd MASS

wget https://dl.fbaipublicfiles.com/XLM/codes_enfr
wget https://dl.fbaipublicfiles.com/XLM/vocab_enfr

./get-data-nmt.sh --src en --tgt fr --reload_codes codes_enfr --reload_vocab vocab_enfr

Pre-training:

python train.py                                      \
--exp_name unsupMT_enfr                              \
--data_path ./data/processed/en-fr/                  \
--lgs 'en-fr'                                        \
--mass_steps 'en,fr'                                 \
--encoder_only false                                 \
--emb_dim 1024                                       \
--n_layers 6                                         \
--n_heads 8                                          \
--dropout 0.1                                        \
--attention_dropout 0.1                              \
--gelu_activation true                               \
--tokens_per_batch 3000                              \
--optimizer adam_inverse_sqrt,beta1=0.9,beta2=0.98,lr=0.0001 \
--epoch_size 200000                                  \
--max_epoch 100                                      \
--eval_bleu true                                     \
--word_mass 0.5                                      \
--min_len 5                                          \

During the pre-training prcess, even without any back-translation, you can observe the model can achieve some intial BLEU scores:

epoch -> 4
valid_fr-en_mt_bleu -> 10.55
valid_en-fr_mt_bleu ->  7.81
test_fr-en_mt_bleu  -> 11.72
test_en-fr_mt_bleu  ->  8.80

Fine-tuning

After pre-training, we use back-translation to fine-tune the pre-trained model on unsupervised machine translation:

MODEL=mass_enfr_1024.pth

python train.py \
  --exp_name unsupMT_enfr                              \
  --data_path ./data/processed/en-fr/                  \
  --lgs 'en-fr'                                        \
  --bt_steps 'en-fr-en,fr-en-fr'                       \
  --encoder_only false                                 \
  --emb_dim 1024                                       \
  --n_layers 6                                         \
  --n_heads 8                                          \
  --dropout 0.1                                        \
  --attention_dropout 0.1                              \
  --gelu_activation true                               \
  --tokens_per_batch 2000                              \
  --batch_size 32	                                     \
  --bptt 256                                           \
  --optimizer adam_inverse_sqrt,beta1=0.9,beta2=0.98,lr=0.0001 \
  --epoch_size 200000                                  \
  --max_epoch 30                                       \
  --eval_bleu true                                     \
  --reload_model "$MODEL,$MODEL"                       \

Supervised NMT

During MASS pre-training, the source and target languages are pre-trained in one model, with the corresponding langauge embeddings to differentiate the langauges. During MASS fine-tuning, supervised sentence pairs are directly used to train the NMT models. We provide pre-trained and fine-tuned models:

Languages Fine-tuned Model BPE codes Vocabulary BLEU
Ro-En MODEL BPE codes Vocabulary WMT16 Ro-En: 39.1

We will release the pre-trained and fine-tuned models for other langauge pairs in the future.

Here is an example to show how to run mass fine-tuning on the WMT16 en-ro dataset.

Data Ready

wget https://dl.fbaipublicfiles.com/XLM/codes_enro
wget https://dl.fbaipublicfiles.com/XLM/vocab_enro

./get-data-bilingual-enro-nmt.sh --src en --tgt fr --reload_codes codes_enro --reload_vocab vocab_enro

Fine-tuning:

Download the mass pre-trained model from the above link. And use the following command to fine tune:

DATA_PATH=./data/processed/en-ro
MODEL=mass_enro_1024.pth

python train.py \
--exp_name unsupMT_enro                              \
--dump_path ./models/en-ro/                          \
--exp_id wmt16_enro_ft                               \
--data_path $DATA_PATH                               \
--lgs 'en-ro'                                        \
--bt_steps 'en-ro-en,ro-en-ro'                       \
--encoder_only false                                 \
--mt_steps 'en-ro,ro-en'                             \
--emb_dim 1024                                       \
--n_layers 6                                         \
--n_heads 8                                          \
--dropout 0.1                                        \
--attention_dropout 0.1                              \
--gelu_activation true                               \
--tokens_per_batch 2000                              \
--batch_size 32                                      \
--bptt 256                                           \
--optimizer adam_inverse_sqrt,beta1=0.9,beta2=0.98,lr=0.0001 \
--epoch_size 200000                                  \
--max_epoch 50                                       \
--eval_bleu true                                     \
--reload_model "$MODEL,$MODEL"

Text Summarization

To apply MASS on text summarization, we provide an example of how to run MASS pre-training and fine-tuning on the Gigaword dataset.

Pre-trained Model BPE codes Vocabulary
MODEL BPE codes Vocabulary

Our model is still under training. We will update it if have a better model.

Pre-training:

For pre-training, we use the following command:

python train.py                                      \
--exp_name mass_english                              \
--data_path ./data/processed/en/                     \
--lgs 'en'                                           \
--mass_steps 'en'                                    \
--encoder_only false                                 \
--emb_dim 1024                                       \
--n_layers 6                                         \
--n_heads 8                                          \
--dropout 0.1                                        \
--attention_dropout 0.1                              \
--gelu_activation true                               \
--tokens_per_batch 3000                              \
--optimizer adam_inverse_sqrt,beta1=0.9,beta2=0.98,lr=0.0001 \
--epoch_size 200000                                  \
--max_epoch 100                                      \
--eval_bleu true                                     \
--word_mass 0.5                                      \
--min_len 5                                          \
--english_only true

Fine-tuning:

Different from unsupervised NMT tasks, we directly use paired data (article-title) to fine-tune the pre-trained model. The fine-tuning command is:

MODEL=mass_en_1024.pth 

python train.py                                      \
--exp_name mass_summarization                        \
--data_path ./data/processed/summarization/          \
--lgs 'ar-ti'                                        \
--mt_steps 'ar-ti'                                   \
--encoder_only false                                 \
--emb_dim 1024                                       \
--n_layers 6                                         \
--n_heads 8                                          \
--dropout 0.2                                        \
--attention_dropout 0.2                              \
--gelu_activation true                               \
--tokens_per_batch 3000                              \
--optimizer adam_inverse_sqrt,beta1=0.9,beta2=0.98,lr=0.0001 \
--epoch_size 200000                                  \
--max_epoch 20                                       \
--eval_bleu true                                     \
--english_only true                                  \
--reload_model "$MODEL,$MODEL"

Conversational Response Generation

To be updated soon.

Reference

If you find MASS useful in your work, you can cite the paper as below:

@inproceedings{song2019mass,
    title={MASS: Masked Sequence to Sequence Pre-training for Language Generation},
    author={Song, Kaitao and Tan, Xu and Qin, Tao and Lu, Jianfeng and Liu, Tie-Yan},
    booktitle={International Conference on Machine Learning},
    pages={5926--5936},
    year={2019}
}

Microsoft Open Source Code of Conduct