Note Please note that after git clone, you need to run
Please_Run_This_First_To_Fetch_Big_Files.py
to fetch all files.在git clone步骤之后,您还需要运行
Please_Run_This_First_To_Fetch_Big_Files.py
去下载另外一部分(非核心但必要)的文件和文档
This is Unreal-based Multi-Agent Playground (U-Map, previous project name is UHMP for Hybrid Unreal-based Multi-agent Playground)
Here you can use all the capabilities of Unreal Engine (Blueprints, Behavior tree, Physics engine, AI navigation, 3D models/animations and Plugin resources, etc) to build elegant (but also computational efficient) and magnificent (but also experimentally reproducible) multi-agent environments.
Developed with Unreal Engine, documenting is in process. 基于UnrealEngine开发,文档正在完善中。
Please star
the Github project. Your encouragement is extremely important to us as researchers: https://github.com/binary-husky/unreal-hmp
此项目处于活跃开发阶段,请打星关注哦。
Contact us:
- Qingxu Fu, CASIA, fuqingxu2019@ia.ac.cn,QQ505030475
- Tianyi Hu, CASIA, hutianyi2021@ia.ac.cn
- Yifan Xu, CASIA, xuyifan2021@ia.ac.cn
- Organization:
-
- Institute of Automation, Chinese Academy of Sciences
-
- School of Artificial Intelligence, University of Chinese Academy of Sciences
-
- Yiteam Swarm Intelligent Research Group
Unreal-based Multi-Agent Playground (U-Map, previously called UHMP) is a new generation of multi-agent environment simulation environment based on the Unreal Engine. This platform supports adversial training between swarms & algorithms, and it is the first (and currently the only) Extensible RL environment based on the Unreal Engine to support multi-team training. U-Map is oriented to adversarial heterogeneous multi-agent reinforcement learning scenarios. The interface is written in Python, The Unreal Engine part uses C++ to handle the communication interface with Python, and other parts use blueprints. The project introduces libs such as xtensor to accelerate the mathematical operations of C++. In terms of scientific research and experiment:
- Pure computing mode that can be compiled into Headless (i.e. dedicated server for training)
- Simulation acceleration at any rate can be achieved until the CPU burns
- Strong repeatability. We have already solved various butterfly effect factors in Unreal Engine that would cause unrepeatable experiments when repeating random seed.
- Support large-scale Swarm. The communication protocol with Python is highly optimized to avoid IO jam caused by the increase of the number of agents
- Very efficient, extremely CPU efficient. The Unreal Engine itself is far more efficient than expected.
- Cross platform. Whether Windows, Linux, or MacOs can compile Headless mode and rendering mode clients
- You can connect the headless process in training across OS, and even watch the environment in training
Unreal-based Multi-Agent Playground (U-Map, 之前的名称是UHMP) 是基于虚幻引擎的新一代多智能体环境仿真环境。 该平台支持多队伍对抗,为第一个(也是目前为止唯一一个)基于虚幻引擎的多智能体+多队伍强化学习环境。 U-Map面向对抗性异构多智能体强化学习场景。 接口部分采用Python编写, 虚幻引擎部分采用C++处理与Python的通讯接口,其他部分采用蓝图。 项目引入xtensor用于加速C++部分的数学运算。 在科研实验方面:
- 可编译为Headless的纯计算模式(即dedicated server,用于训练)
- 可实现任意倍率的仿真加速,直到跑满CPU
- 可重复性强。排除了UnrealEngine中各种会造成实验不可重复的蝴蝶效应因素
- 支持大规模。与Python端的通讯协议高度优化,避免了随智能体数量增多导致的IO卡顿
- 非常高效,极其节省CPU。Unreal引擎本身的效率远超预想。
- 跨平台。不管是Windows、Linux还是MacOs都能编译Headless模式和渲染模式的客户端
- 可跨OS连接训练中的Headless进程,甚至可以观看训练中的环境.
- Step 1, you must install the Unreal Engine from the source code. For details, see the official document of the Unreal Engine:
https://docs.unrealengine.com/4.27/zh-CN/ProductionPipelines/DevelopmentSetup/BuildingUnrealEngine/
- Step 2: Clone the git resp
git clone https://github.com/binary-husky/unreal-hmp.git
- Step 3: Download large files that github cannot manage. Run
python Please_ Run_ This_ First_ To_ Fetch_ Big_ Files.py
- Step 4: Right click the
UHMP.upproject
downloaded in step 3, selectswitch unreal engine version
, and then selectsource build at xxxxx
to confirm. Then open the generatedUHMP. sln
and compile it - Finally, double-click
UHMP. upproject
to enter the Unreal Engine Editor.
Note that steps 1 and 4 are difficult. It is recommended to refer to the following video (the 0:00->1:46 in the video is the steps 1, and 1:46->end is steps 4): https://ageasga-my.sharepoint.com/:v:/g/personal/fuqingxu_yiteam_tech/EawfqsV2jF5Nsv3KF7X1-woBH-VTvELL6FSRX4cIgUboLg?e=Vmp67E
- 第1步,必须从
源代码
安装虚幻引擎,具体方法见虚幻引擎的官方文档:https://docs.unrealengine.com/4.27/zh-CN/ProductionPipelines/DevelopmentSetup/BuildingUnrealEngine/ - 第2步,克隆本仓库。
git clone https://github.com/binary-husky/unreal-hmp.git
- 第3步,下载github不能管理的大文件。运行
python Please_Run_This_First_To_Fetch_Big_Files.py
。 - 第4步,
右
击第3步下载得到的UHMP.uproject
,选择switch unreal engine version
,再选择source build at xxxxx
确认。然后打开生成的UHMP.sln
,编译即可。 - 最后,双击
UHMP.uproject
进入虚幻引擎编辑器。
注意,第1步和第4步较难,建议参考以下视频(视频中前1分46秒为第1步流程,后面为第4步流程): https://ageasga-my.sharepoint.com/:v:/g/personal/fuqingxu_yiteam_tech/EawfqsV2jF5Nsv3KF7X1-woBH-VTvELL6FSRX4cIgUboLg?e=Vmp67E
https://github.com/binary-husky/hmp2g/blob/master/ZDOCS/use_unreal_hmap.md
The document is being improved. For the video tutorial of simple demo, see EnvDesignTutorial.pptx
(you need to complete step 3 of installation to download this pptx file)
Directory:
- Chapter I. Unreal Engine
-
- Build a map (Level)
-
- Establish Agent Actor
-
- Design agent blueprint program logic
-
- Episode key event notification mechanism
-
- Define Custom actions (Unreal Engine side)
-
- The Python side controls the custom parameters of the agent
- Chapter II. Python Interface
-
- Create a task file (SubTask)
-
- Modify agent initialization code
-
- Modify the agent reward code
-
- Select the control algorithm of each team
-
- Full closed loop debugging method
- Chapter III. Appendix
-
- Headless acceleration and cross-compiling Linux package
-
- Define Custom actions (Need to be familiar with the full closed-loop debugging method first)
-
-
- Draft a list of actions
-
-
-
- Python side action generation
-
-
-
- UE-side action parse and execution
-
-
-
- Action discretization
-
-
- Installation guide for cross compilation tool chain
文档正在完善,简单demo的视频教程见EnvDesignTutorial.pptx
(需要完成安装步骤3以下载此pptx文件)
以及https://www.bilibili.com/video/BV1pK411z77c/?spm_id_from=333.999.0.0
设计方法目录:
-
第一章 虚幻引擎部分
-
- 1.1 建立地图(Level):
https://www.bilibili.com/video/BV1U24y1D7i4/?spm_id_from=333.999.0.0&vd_source=e3bc3eddd1d2414cb64ae72b6a64df55
- 1.1 建立地图(Level):
-
- 1.2 建立智能体蓝图(Agent Actor)
-
- 1.3 设计智能体蓝图程序逻辑
-
- 1.4 Episode关键事件通知机制
-
- 1.5 自定义动作(虚幻引擎侧)(见第三章)
-
- 1.6 由Python端控制Agent的自定义参数
-
第二章 Python接口部分
-
- 2.1 建立任务文件(SubTask)
-
- 2.2 修改智能体初始化代码
-
- 2.3 修改智能体奖励代码
-
- 2.4 选择各队伍的控制算法
-
- 2.5 全闭环调试方法(Python-UMAP回环)
-
第三章 附录
-
- 3.1 无渲染加速与交叉编译Linux二进制包
-
- 3.2 自定义动作 (需要首先熟悉2.5全闭环调试方法)
-
-
- 3.2.1 起草动作清单
-
-
-
- 3.2.2 Python侧动作生成
-
-
-
- 3.2.3 UE侧动作解析与执行
-
-
-
- 3.2.4 强化学习动作离散化
-
-
- 3.3 交叉编译工具链的安装指南
Run following scripts.
- Among them,
Render/Server
representsincluding graphic rendering / only computing
, the later is generally used for RL training. - Among them,
Windows/linux
represents the target operating system. Note that you need to installUnreal Engine Cross Compilation Tool
to compile Linux programs on Windows.
运行一下脚本即可。
- 其中
Render/Server
代表包含图形渲染/无界面仅计算
,后者一般用于RL训练。 - 其中
Win/linux
代表目标操作系统,注意在windows上编译linux程序需要安装虚幻引擎交叉编译工具
。
python BuildlinuxRender.py
python BuildLinuxServer.py
python BuildWinRender.py
python BuildWinServer.py
- After adding new ActionSets in
Content/Assets/DefAction/ParseAction.uasset
. You may encounterEnsure condition failed: !FindPin(FFunctionEntryHelper::GetWorldContextPinName())
error during packaging, if so, find and remove an extra blueprint function parameter named__WorldContext
that you created by accident inParseAction.uasset
. 如果在添加新的自定义动作之后遇到上述错误,说明你无意间添加了一个叫__WorldContext
的蓝图函数参数,找到并删除它即可。https://forums.unrealengine.com/t/ensure-condition-failed-on-project-start/469587
.
- 2023-3-9 正在尝试用共享内存通讯替换tcp通讯,以提高IO效率,待上传到4.0版本
- 2023-3-1 实现高效感知模块,待上传到4.0版本
- 2023-2-15 版本3.7融入master分支
- 2023-2-14 3.7上传中
- 2023-2-14
EnvDesignTutorial.pptx
中更新了自定义动作的文档 - 2023-2-14 上传了一个微缩版的hmp代码,作为入门用的U-MAP驱动,文档待写
- 2023-2-1 将读起来蹩脚的UHMAP缩写名称改为U-Map
- 2023-1-8 update readme
- 2023-12-25 covid is not a flu /(ㄒoㄒ)/
- 2022-12-22 版本3.6融入master分支
- 2022-12-21 解决智能体scale!=1的情况下,飞行智能体高度越来越低的问题
- 2022-12-21 修复超大规模智能体数量情况下缓存区溢出的问题
- 2022-12-18 优化大文件下载脚本
- 2022-12-17 版本3.5融入master分支