Pandas with some cool additional features
pip install pandit
import pandas as pd, import pandit
# or import pandit as pd
df=pd.read_tsv(path)
df.sieve(x=3).show()
#Pandas behaves normally otherwise
If credentials are needed (read/export to dropbox, export to sheets)
import credentials # you manage that part
assert credentials.sheets # credential dict in https://docs.gspread.org/en/latest/oauth2.html
assert credentials.dropbox # your dropbox API key
pd.credentials = credentials
df.sieve(column1=value1, columns2=value2)
# returns df rows where column equals value - if value is not a list, otherwise:
df.sieve(column3=[value1,value2])
# returns df rows where column is value1 or value2; use [[value1,value2]] to match lists
# It's like pd.query but with a pythonic syntax instead of the sql string.
df.show() # shows multiple rows column by column (one line per column) with nice formatting, one line per column
# ideal for inspecting NLP datasets
df.rshow(n) # random sample of size n (default is 20)
Also:
bold max float values df.bold_max().to_latex()
read_csv
with sep='\t'
for lazy persons
df.read_{extension}
where extension is extracted from the input path (.csv = read_csv)
drop columns that are constant
Save dataframe to dropbox
Save dataframe to sheets